If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3/2a+29/6+1/7a=1307/294
We move all terms to the left:
-3/2a+29/6+1/7a-(1307/294)=0
Domain of the equation: 2a!=0
a!=0/2
a!=0
a∈R
Domain of the equation: 7a!=0We add all the numbers together, and all the variables
a!=0/7
a!=0
a∈R
-3/2a+1/7a+29/6-(+1307/294)=0
We get rid of parentheses
-3/2a+1/7a+29/6-1307/294=0
We calculate fractions
(-768516a^2)/148176a^2+835548a^2/148176a^2+(-222264a)/148176a^2+21168a/148176a^2=0
We multiply all the terms by the denominator
(-768516a^2)+835548a^2+(-222264a)+21168a=0
We add all the numbers together, and all the variables
835548a^2+(-768516a^2)+21168a+(-222264a)=0
We get rid of parentheses
835548a^2-768516a^2+21168a-222264a=0
We add all the numbers together, and all the variables
67032a^2-201096a=0
a = 67032; b = -201096; c = 0;
Δ = b2-4ac
Δ = -2010962-4·67032·0
Δ = 40439601216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{40439601216}=201096$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-201096)-201096}{2*67032}=\frac{0}{134064} =0 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-201096)+201096}{2*67032}=\frac{402192}{134064} =3 $
| 15j-17j=20 | | 2x+10.5=19.5 | | Y=17xx=-2 | | 3.95m+8.95(95)=47.65 | | U-6u+10=-10 | | (b-61)÷4=6 | | (45)(5)+20x=485 | | (b-62)÷4=6 | | 211/35=18/5b+2-5/4b | | 2u2+9u=-4 | | 3•2e+2•6=-23 | | 3-7y=4y-30 | | 6(9-3x)+2x=342 | | 4z+13=7z-8 | | 3x-9x-9=-6x+2-9 | | -3x+7(5x+7)=7(7-2x) | | 16x+14(x+1)=30x(x+1)-16 | | S-1.7x=6.4 | | 22-4j=10 | | 77+15=s | | 80=-3x-7x | | 10(g+5)=2(g=9) | | 0.4/x=9.7 | | 6.96=-8.7x | | 3x-9=7x+11 | | x-1/4=1-x+2/5 | | -3v-7(4-v)=-16+2 | | 3^(3x+2)=24 | | 3-(7x-2)=40 | | 27+4x=33 | | -6(-5-7)-5b=-24+3b | | x/12=-36 |