-3-7(x+2)=-8(1+x)8x

Simple and best practice solution for -3-7(x+2)=-8(1+x)8x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3-7(x+2)=-8(1+x)8x equation:



-3-7(x+2)=-8(1+x)8x
We move all terms to the left:
-3-7(x+2)-(-8(1+x)8x)=0
We add all the numbers together, and all the variables
-7(x+2)-(-8(x+1)8x)-3=0
We multiply parentheses
-7x-(-8(x+1)8x)-14-3=0
We calculate terms in parentheses: -(-8(x+1)8x), so:
-8(x+1)8x
We multiply parentheses
-64x^2-64x
Back to the equation:
-(-64x^2-64x)
We add all the numbers together, and all the variables
-(-64x^2-64x)-7x-17=0
We get rid of parentheses
64x^2+64x-7x-17=0
We add all the numbers together, and all the variables
64x^2+57x-17=0
a = 64; b = 57; c = -17;
Δ = b2-4ac
Δ = 572-4·64·(-17)
Δ = 7601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(57)-\sqrt{7601}}{2*64}=\frac{-57-\sqrt{7601}}{128} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(57)+\sqrt{7601}}{2*64}=\frac{-57+\sqrt{7601}}{128} $

See similar equations:

| -160=-4(7n-2) | | 30x=-300 | | Y=2x;(3,6) | | 8x-10=3(-2x+6) | | -x-15=-6-(x+2) | | ½x+¾=2x-¼ | | 2x+12+17=12x-11 | | 7x=14-5x | | 7(2x-3)=-35 | | X/3x=42 | | -(d+3)=12 | | 287=111-x | | h-7=104 | | 10x-3=14x-13 | | 4x-36=8(6x+1) | | 3(x+5)+2x=60 | | -2x+14=4x+2 | | -7(x-8)=24-3x | | -256=8(8a-8) | | –13=15n–73 | | 3x+(3)/(8)=2+(2x)/(3) | | 3(c-4)=6 | | 19-6=23-x | | -2x+14=6x+2 | | x+10=35-15* | | -7x+27=-8(4x+6) | | -34+8x=-2x+6(1+5x) | | -8(1-5n)=152 | | 10x+7=7x-8 | | 4b-3=2b+2 | | 3/5x-12=3 | | X-18=2-9x |

Equations solver categories