If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3+n2=0
We add all the numbers together, and all the variables
n^2-3=0
a = 1; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·1·(-3)
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3}}{2*1}=\frac{0-2\sqrt{3}}{2} =-\frac{2\sqrt{3}}{2} =-\sqrt{3} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3}}{2*1}=\frac{0+2\sqrt{3}}{2} =\frac{2\sqrt{3}}{2} =\sqrt{3} $
| 3/4(y+8)=9 | | -5+k+2k/5=11 | | -10+k/2=-3 | | (6y+3)=(7y-3) | | 5(r+7)=65 | | -5(6x-4)+9=-30x+29 | | 19-4p=55 | | b8+6=8 | | -.003x^2+0.14+8=0 | | 8b+32=-64 | | 27=2x-4 | | 3x+24=x+52 | | (3x+7)^2=9 | | 3x-6=0, | | 3u−1=2 | | 6x+7x-4=4x+4x-4 | | -57=19x | | 2(k-5)+3k=k=6 | | 7b+8b=b | | -19(y+3)+6(4y-6)=4(y-4)+9 | | -10=-14+14w | | 18.14=3g+3.56 | | 6y-30+y=5 | | -4x-62=35 | | 10−3c=1 | | 2(p+1)+8(p-1)=5p+9 | | 4a-8=a+13 | | 20-2b-3b=5 | | x–7=6 | | 64=4^x+1 | | ?3(x2+5)-6=(9x+18)3 | | 64=4x+1 |