-3(6v-9)9v=7(v+3)

Simple and best practice solution for -3(6v-9)9v=7(v+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3(6v-9)9v=7(v+3) equation:



-3(6v-9)9v=7(v+3)
We move all terms to the left:
-3(6v-9)9v-(7(v+3))=0
We multiply parentheses
-162v^2+243v-(7(v+3))=0
We calculate terms in parentheses: -(7(v+3)), so:
7(v+3)
We multiply parentheses
7v+21
Back to the equation:
-(7v+21)
We get rid of parentheses
-162v^2+243v-7v-21=0
We add all the numbers together, and all the variables
-162v^2+236v-21=0
a = -162; b = 236; c = -21;
Δ = b2-4ac
Δ = 2362-4·(-162)·(-21)
Δ = 42088
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{42088}=\sqrt{4*10522}=\sqrt{4}*\sqrt{10522}=2\sqrt{10522}$
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(236)-2\sqrt{10522}}{2*-162}=\frac{-236-2\sqrt{10522}}{-324} $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(236)+2\sqrt{10522}}{2*-162}=\frac{-236+2\sqrt{10522}}{-324} $

See similar equations:

| 11.2n+6=5.2 | | 37x-42=21x-10 | | 6u-56=4u-24 | | 49y=14 | | 9x+1=7x-2 | | 64-56=4u-24 | | 8x=49x | | 37x-2=21x-10 | | 36-2v=4v | | -3(6v-9)9v=7v3) | | .22(x+5)=0.2x+1.4 | | 1/4​ (3/1k+9)=6 | | 5(8-2n)=35 | | 2d-5=8 | | 2x-5+3x=8=18 | | 2/4b=-4 | | -2-3(-2x+4)+8=16 | | 9+3=12+v−8/2​ | | 40x+7.5x=900 | | 9+3=12+2v−8​ | | 11y-7=26 | | (3x+24)=(7x) | | 100x-1500-2x^2=0 | | 40x+32=180 | | 4t=t+51 | | x^6+8x^5+16x^2=0 | | 40x+32=x | | 4h-8=12 | | 8x-12=-12 | | 78x=4,369 | | 3(x-4)=2(x+9)+4 | | t/4=-3×3.14 |

Equations solver categories