-3(5p+4)-2(5-17p)-3(6+6p)=0

Simple and best practice solution for -3(5p+4)-2(5-17p)-3(6+6p)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3(5p+4)-2(5-17p)-3(6+6p)=0 equation:


Simplifying
-3(5p + 4) + -2(5 + -17p) + -3(6 + 6p) = 0

Reorder the terms:
-3(4 + 5p) + -2(5 + -17p) + -3(6 + 6p) = 0
(4 * -3 + 5p * -3) + -2(5 + -17p) + -3(6 + 6p) = 0
(-12 + -15p) + -2(5 + -17p) + -3(6 + 6p) = 0
-12 + -15p + (5 * -2 + -17p * -2) + -3(6 + 6p) = 0
-12 + -15p + (-10 + 34p) + -3(6 + 6p) = 0
-12 + -15p + -10 + 34p + (6 * -3 + 6p * -3) = 0
-12 + -15p + -10 + 34p + (-18 + -18p) = 0

Reorder the terms:
-12 + -10 + -18 + -15p + 34p + -18p = 0

Combine like terms: -12 + -10 = -22
-22 + -18 + -15p + 34p + -18p = 0

Combine like terms: -22 + -18 = -40
-40 + -15p + 34p + -18p = 0

Combine like terms: -15p + 34p = 19p
-40 + 19p + -18p = 0

Combine like terms: 19p + -18p = 1p
-40 + 1p = 0

Solving
-40 + 1p = 0

Solving for variable 'p'.

Move all terms containing p to the left, all other terms to the right.

Add '40' to each side of the equation.
-40 + 40 + 1p = 0 + 40

Combine like terms: -40 + 40 = 0
0 + 1p = 0 + 40
1p = 0 + 40

Combine like terms: 0 + 40 = 40
1p = 40

Divide each side by '1'.
p = 40

Simplifying
p = 40

See similar equations:

| 64y^3-4=y-256y^2 | | 32-48x+12x^2=0 | | 24+2*.66=3*.66+2(3*4) | | 5b-3=3b+11 | | x+7=14x-1 | | y+19=-10 | | 8-12x+3x^2=0 | | 5(11-3x)-7x=1 | | 10a-4a-0b+2b= | | 8-12x-3x^2=0 | | 2x-5(x+10)=13 | | (2+2)(3+7x)=40-2.5(x+3) | | Y-20=21 | | 18=2u-16 | | X^3+9x^2+7x+63=0 | | x(.80)=128 | | 3x+4=2x+u | | -13=v-18 | | x^2-2s=40+4s | | 4x(2x^2-x-6)=0 | | -1(6x+6)+2=-6x-3 | | 1*2*3= | | 4(2b-6+11)=8b-13 | | 7x-11=-2x+10 | | 4(8x-38)=4-4(x+7) | | 4x+x+7x= | | 2=1+9z+9 | | R=14ft | | 3+5(x)=x+11 | | x^2-52x=0 | | x^2+204=29x | | f(x)=x^2+9x |

Equations solver categories