-3(2y+5)-11=-4(y+8)2y

Simple and best practice solution for -3(2y+5)-11=-4(y+8)2y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3(2y+5)-11=-4(y+8)2y equation:



-3(2y+5)-11=-4(y+8)2y
We move all terms to the left:
-3(2y+5)-11-(-4(y+8)2y)=0
We multiply parentheses
-6y-(-4(y+8)2y)-15-11=0
We calculate terms in parentheses: -(-4(y+8)2y), so:
-4(y+8)2y
We multiply parentheses
-8y^2-64y
Back to the equation:
-(-8y^2-64y)
We add all the numbers together, and all the variables
-(-8y^2-64y)-6y-26=0
We get rid of parentheses
8y^2+64y-6y-26=0
We add all the numbers together, and all the variables
8y^2+58y-26=0
a = 8; b = 58; c = -26;
Δ = b2-4ac
Δ = 582-4·8·(-26)
Δ = 4196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4196}=\sqrt{4*1049}=\sqrt{4}*\sqrt{1049}=2\sqrt{1049}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(58)-2\sqrt{1049}}{2*8}=\frac{-58-2\sqrt{1049}}{16} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(58)+2\sqrt{1049}}{2*8}=\frac{-58+2\sqrt{1049}}{16} $

See similar equations:

| 4x-2(x-2)=4=5x-13 | | 3x+20=5x+18 | | 5(3y-4)/8=4y-11 | | 2(W-1)=-3w-7 | | -11=2k-37 | | 14s−11s+2s=15 | | 5*(1-x)=3-2*(x-3) | | 9q−8q=17 | | 3.211+c=54.000 | | 6v-13v=91 | | 16v−13v=9 | | 60=-10+10*2+6*4+0.6x | | 3n−2n=11 | | 12a−10a=8 | | 2k-k=2 | | 2k−k=2 | | 9h-8h=20 | | 10x+12=6x-33 | | 1/2x^2-x-1=0 | | 9h−8h=20 | | 2x+20/4=2 | | 7d+3d=10 | | -2=b+27/2 | | х^3+12x^2+44x+48=0 | | 7(u-7)=9u-29 | | 8w-16=-5(w-2) | | y=(3/4)(7/9)(4/7) | | z^2-18z+97=0 | | 2*(x/5+2)+x=10,3 | | 13w=9w+12 | | 9(u+4)=2u+43 | | 5(x+3)-7x=-5 |

Equations solver categories