-3(-4x-2)=13.5x(x-6)

Simple and best practice solution for -3(-4x-2)=13.5x(x-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3(-4x-2)=13.5x(x-6) equation:



-3(-4x-2)=13.5x(x-6)
We move all terms to the left:
-3(-4x-2)-(13.5x(x-6))=0
We multiply parentheses
12x-(13.5x(x-6))+6=0
We calculate terms in parentheses: -(13.5x(x-6)), so:
13.5x(x-6)
We multiply parentheses
13x^2-78x
Back to the equation:
-(13x^2-78x)
We get rid of parentheses
-13x^2+12x+78x+6=0
We add all the numbers together, and all the variables
-13x^2+90x+6=0
a = -13; b = 90; c = +6;
Δ = b2-4ac
Δ = 902-4·(-13)·6
Δ = 8412
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8412}=\sqrt{4*2103}=\sqrt{4}*\sqrt{2103}=2\sqrt{2103}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-2\sqrt{2103}}{2*-13}=\frac{-90-2\sqrt{2103}}{-26} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+2\sqrt{2103}}{2*-13}=\frac{-90+2\sqrt{2103}}{-26} $

See similar equations:

| -(4x+2)=-(4x+3) | | (5z-5)+(2z+4)=90 | | -129=-3(6k-5) | | x+12/4=-9 | | 4(n+3)=4n-4 | | -(1+n)+n=-10+3n | | 9a-21=16a+20 | | 72=12b-18b-24 | | -6+z/18=-7 | | 4x-3(2x+17)=-11 | | 10+6c=-5+6c | | -4(2-5x)=10x-28 | | –8j−–20j=12 | | 0.01^x=5 | | 180=x+58 | | -5x-6=3x+4 | | 12x-6-12=-2x-10 | | V+3v+5=65 | | x*2x=250 | | -5+w/2=12 | | 8+6d=-4+6d | | 2r-2(r-3)=6-2r | | 23-7x=36-9x | | 4(x–20)=2x+10 | | -113=b+7(7-4b) | | (8x-13)=180 | | -6p=3 | | 8/x+4=5/7x | | 9/2=1/2x+3/2x | | x(2)=3x-5 | | 80-4m-3m=17 | | -11x-57=-7(2x+7)+x |

Equations solver categories