If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2x^2+8x+15=0
a = -2; b = 8; c = +15;
Δ = b2-4ac
Δ = 82-4·(-2)·15
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{46}}{2*-2}=\frac{-8-2\sqrt{46}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{46}}{2*-2}=\frac{-8+2\sqrt{46}}{-4} $
| 3x3+7x2+6x=0 | | 5x-39+3x+27=180 | | -2(x+1)2=-10 | | -2x(x+1)2=-10 | | b+175=483 | | 0+6y=16 | | x4+5=-5 | | 8n-5=-29 | | 3x=(4x-20) | | 2(4-x)-(-x-5)=0 | | u-4.34=8.7 | | -3=-19+5d | | 4(x-5)2=48 | | n-5=-19 | | 3(4+x)=x-1 | | 3x+134=6x+10 | | 40.3x^2=1/2(80.6)x^2 | | 2x−1/6=x+11/8 | | 132+4=8x+64 | | 2x(x+10)=x+23 | | 2(8+2.5x)=26 | | 4(-4+3v)+3v=40+8v | | 2(x-2)+x=x+5 | | 59y=(2y+5) | | 11=83x | | 6x(10x)=115 | | -5+3w=-1 | | 11x-11+5x+5+3x+5=180 | | 3x=x+65 | | P(x)=x3−2x2−3x+10 | | 21.12n=13 | | 3x+9=36+36 |