If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2x+3x^2=65
We move all terms to the left:
-2x+3x^2-(65)=0
a = 3; b = -2; c = -65;
Δ = b2-4ac
Δ = -22-4·3·(-65)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-28}{2*3}=\frac{-26}{6} =-4+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+28}{2*3}=\frac{30}{6} =5 $
| −12x+5=10 | | 0.15+5.00=m | | 15.3x6.4=97.92 | | -2(-5x+-4)+x+1=119 | | 25-4n=-7+3(-6+7n) | | Y=25+10z | | Y=85+7x | | -9+2n=23 | | -5-6/7x=13 | | 5.7=-2.3+y | | 14+9m=50 | | a+3-2=-15-7a | | 8-(n+3)=-8n+26 | | 5x2+9x–2=0 | | 8(x+5)=3(x-5) | | 28=8w-4 | | -3.92-9.3f=0.49-7.2f | | –3b+–3=–6 | | 2x–5=12x+15 | | -3x-4-x=-4-4x+10 | | 8-16=m | | z/5+45=53 | | 30=-6(n+4) | | -25=-4(t-4)-5 | | 4-(n+1)10=76 | | y^2=-44 | | -2p-22=8p+18 | | 7x60=7x | | 3(y-4)=-21 | | z5+45=53 | | 2(19x)=x+74 | | -8(9x+2)=-12-8x |