-2x(x-1)=2(x-3)

Simple and best practice solution for -2x(x-1)=2(x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2x(x-1)=2(x-3) equation:



-2x(x-1)=2(x-3)
We move all terms to the left:
-2x(x-1)-(2(x-3))=0
We multiply parentheses
-2x^2+2x-(2(x-3))=0
We calculate terms in parentheses: -(2(x-3)), so:
2(x-3)
We multiply parentheses
2x-6
Back to the equation:
-(2x-6)
We get rid of parentheses
-2x^2+2x-2x+6=0
We add all the numbers together, and all the variables
-2x^2+6=0
a = -2; b = 0; c = +6;
Δ = b2-4ac
Δ = 02-4·(-2)·6
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*-2}=\frac{0-4\sqrt{3}}{-4} =-\frac{4\sqrt{3}}{-4} =-\frac{\sqrt{3}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*-2}=\frac{0+4\sqrt{3}}{-4} =\frac{4\sqrt{3}}{-4} =\frac{\sqrt{3}}{-1} $

See similar equations:

| 2(x+2)+3x=2(x+1)+17 | | 2(4e-5)-3=2(2e+5)+1 | | -w+244=180 | | 6=6x-42 | | x-(4x-5)=3-2x | | 5t5/4=11 | | 4y+7=6y-1 | | (2x-5)/4-5(7-5x)/6=7x/3 | | 27c=30 | | 129x+38=433 | | 1.29x+.38=4.33 | | m/11-12=-6 | | 4k-7=41 | | 50w=144 | | 36+x=84 | | y-2/9=-4/27 | | (5x4)x=5x(4x8) | | 4c+9=13 | | 2x(3x9)=(2x3)x9= | | 5500+2500y=62000+2000y | | 3/5(15x+10)+2=2+3/5(15x+10) | | 24.75x+23=17.25+53 | | 175m-75m+58.200=60.000+200m | | -3x+1/2=-5/3x-7/3 | | 3/5x-2/5=-6x+5/3 | | -5v+19=-9(v-3) | | -2(y-5)=6y-23 | | 5/3x+1/3x=10/2/3+7/3x | | 0.512=x^-2 | | 2=1.09^c | | D=-5t+2.5 | | t+56=5t |

Equations solver categories