-2x(5x+8)+6x/4=x-8=

Simple and best practice solution for -2x(5x+8)+6x/4=x-8= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2x(5x+8)+6x/4=x-8= equation:



-2x(5x+8)+6x/4=x-8=
We move all terms to the left:
-2x(5x+8)+6x/4-(x-8)=0
We multiply parentheses
-10x^2-16x+6x/4-(x-8)=0
We get rid of parentheses
-10x^2-16x+6x/4-x+8=0
We multiply all the terms by the denominator
-10x^2*4-16x*4+6x-x*4+8*4=0
We add all the numbers together, and all the variables
-10x^2*4+6x-16x*4-x*4+32=0
Wy multiply elements
-40x^2+6x-64x-4x+32=0
We add all the numbers together, and all the variables
-40x^2-62x+32=0
a = -40; b = -62; c = +32;
Δ = b2-4ac
Δ = -622-4·(-40)·32
Δ = 8964
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8964}=\sqrt{36*249}=\sqrt{36}*\sqrt{249}=6\sqrt{249}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-62)-6\sqrt{249}}{2*-40}=\frac{62-6\sqrt{249}}{-80} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-62)+6\sqrt{249}}{2*-40}=\frac{62+6\sqrt{249}}{-80} $

See similar equations:

| 3z-28=5z-68 | | 6-x-3=4×-12 | | 15d+3d-8d=9 | | -5d=-30 | | 4.75x+4.75=4x+4 | | 0.2x+0.1=0.6x-0.7 | | 4t+4=t+16 | | -(x+3)=•8-10x | | −9.5x+0.28=−7.32= | | 4x-32=-7 | | 10u-45+6u+65=180 | | b/5+4=3 | | z/3+4=-78 | | −9.5x+0.28=−7.32 | | (8x+12)/1/2=90 | | 3x-3-11-8x=1 | | 8a-23=6a-11 | | 15=5a-13 | | 10y+4–7y=–17 | | 12.5=u5 | | -7x+8=-31+6x | | 2v+12+v=180 | | 28x+308=63x-217 | | 6w-20=4w-8 | | 9.8+9x-35=0 | | c.6=9 | | 33x-3=26 | | r/3+5r=-47 | | p-7=-24 | | -4y+10=13 | | 4x2-13=12 | | 10+2x=-x+46 |

Equations solver categories