-2x(20-8x)-(15-5x)=(4x-5)

Simple and best practice solution for -2x(20-8x)-(15-5x)=(4x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2x(20-8x)-(15-5x)=(4x-5) equation:



-2x(20-8x)-(15-5x)=(4x-5)
We move all terms to the left:
-2x(20-8x)-(15-5x)-((4x-5))=0
We add all the numbers together, and all the variables
-2x(-8x+20)-(-5x+15)-((4x-5))=0
We multiply parentheses
16x^2-40x-(-5x+15)-((4x-5))=0
We get rid of parentheses
16x^2-40x+5x-((4x-5))-15=0
We calculate terms in parentheses: -((4x-5)), so:
(4x-5)
We get rid of parentheses
4x-5
Back to the equation:
-(4x-5)
We add all the numbers together, and all the variables
16x^2-35x-(4x-5)-15=0
We get rid of parentheses
16x^2-35x-4x+5-15=0
We add all the numbers together, and all the variables
16x^2-39x-10=0
a = 16; b = -39; c = -10;
Δ = b2-4ac
Δ = -392-4·16·(-10)
Δ = 2161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-39)-\sqrt{2161}}{2*16}=\frac{39-\sqrt{2161}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-39)+\sqrt{2161}}{2*16}=\frac{39+\sqrt{2161}}{32} $

See similar equations:

| x/2+9=35 | | 10^x^2+1=100000 | | 5=q–2 | | k=5-7-6 | | 5x+1/4=1/61 | | 114=5x+14 | | 1.875x+15=2x-8 | | 7x+65/6=-16 | | 1-3p=1-5p | | 10+7y=7y+6 | | 720=300+7b | | 21x=14.4 | | -4(3g+5)+10g=18 | | 2w–13+3w=–18 | | 5a+3+3a+25=180 | | 4x+5x=+3x+7x | | 8x+17=305 | | 5a+3=3a+25 | | 2a+25=61 | | 0.35m=0.75 | | x+x*0.6=50 | | 9y+2=3y+20 | | 1.875x+15=2x+8 | | 2(3m-4)=13 | | 2=c4 | | 1.875x+8=2x+8 | | 20b+5b+5-4=5(5b-6) | | Y=200x-28 | | y=500(1.05)10 | | b+18=24 | | 2(w+5)=50 | | 14d−3d+4d−14d+d=16 |

Equations solver categories