-2u-20=-8u(u-2)

Simple and best practice solution for -2u-20=-8u(u-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2u-20=-8u(u-2) equation:



-2u-20=-8u(u-2)
We move all terms to the left:
-2u-20-(-8u(u-2))=0
We calculate terms in parentheses: -(-8u(u-2)), so:
-8u(u-2)
We multiply parentheses
-8u^2+16u
Back to the equation:
-(-8u^2+16u)
We get rid of parentheses
8u^2-16u-2u-20=0
We add all the numbers together, and all the variables
8u^2-18u-20=0
a = 8; b = -18; c = -20;
Δ = b2-4ac
Δ = -182-4·8·(-20)
Δ = 964
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{964}=\sqrt{4*241}=\sqrt{4}*\sqrt{241}=2\sqrt{241}$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{241}}{2*8}=\frac{18-2\sqrt{241}}{16} $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{241}}{2*8}=\frac{18+2\sqrt{241}}{16} $

See similar equations:

| 2(x-6)=-19 | | 1500x+8=12x | | 6r-4r-r+3=20 | | 15=-4x-3(2+x) | | 20b-11b-6b+2=20 | | x+4+8=60 | | 5x+5.5=17.25 | | c=2(3.14)2.4 | | 13x+15=17x-9 | | 4p+7=2p-11 | | 3x^2−24x+45=0 | | –6n−–8n+–15=13 | | 9x+6=8+13 | | 17m+-10m+-m=-18 | | x-5=7x+11 | | y=2(1)^2 | | 12.5=0.3m–2.8m | | -¼(16x-32)+8x=20 | | c=134(2.4) | | 3+1.50x=30x | | 23=x/3+11 | | 2(3/2)-8y=14 | | 42=-v+180 | | 2r-r+3=11 | | y/5-13=16 | | 2r+3+89+90=180 | | 15x+5=14+2x | | 2.b2=0 | | w2+ 7=11 | | 3b^2+42=25b | | w/2+ 7=11 | | 2a-2=3a-6 |

Equations solver categories