-2b+2b(b-10)=2(10+5b)

Simple and best practice solution for -2b+2b(b-10)=2(10+5b) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2b+2b(b-10)=2(10+5b) equation:



-2b+2b(b-10)=2(10+5b)
We move all terms to the left:
-2b+2b(b-10)-(2(10+5b))=0
We add all the numbers together, and all the variables
-2b+2b(b-10)-(2(5b+10))=0
We multiply parentheses
2b^2-2b-20b-(2(5b+10))=0
We calculate terms in parentheses: -(2(5b+10)), so:
2(5b+10)
We multiply parentheses
10b+20
Back to the equation:
-(10b+20)
We add all the numbers together, and all the variables
2b^2-22b-(10b+20)=0
We get rid of parentheses
2b^2-22b-10b-20=0
We add all the numbers together, and all the variables
2b^2-32b-20=0
a = 2; b = -32; c = -20;
Δ = b2-4ac
Δ = -322-4·2·(-20)
Δ = 1184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1184}=\sqrt{16*74}=\sqrt{16}*\sqrt{74}=4\sqrt{74}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-4\sqrt{74}}{2*2}=\frac{32-4\sqrt{74}}{4} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+4\sqrt{74}}{2*2}=\frac{32+4\sqrt{74}}{4} $

See similar equations:

| 24/16=x/18 | | 9+-3=k | | 16/18=x/24 | | 5x-2=3x-76 | | 64*(x+2)^2=0 | | 8×=5x+2 | | 4z=-6-10 | | k+1/3=51/3 | | 4x/3+7=1 | | 20*x=1200 | | P=7.5n-(2.5n+15) | | 18x+69/6=14x+28 | | 5x-2.5+6x-3=2x-1 | | -1/2+x=-4/3 | | 12/72=14/x | | -19d-57=76 | | x/7=3x-9 | | 14/72=12/x | | (8(2^2)−15(2))−(2(2^2)−2(2))=x(2^2)+10(2) | | 2x-10=4x+2 | | 120/80=x/132 | | 6+2c/7=30 | | 132/120=x/80 | | 120/132=x/80 | | 213=+9x | | -16y+14=-66 | | -7.2(x15.6)=-6 | | (X×x)+12=8x | | 13-4x=-2x-5 | | 4x-6x=32 | | 5n+3n=35 | | 1=1y—2 |

Equations solver categories