-2a(a-6)=4(a-3)

Simple and best practice solution for -2a(a-6)=4(a-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2a(a-6)=4(a-3) equation:



-2a(a-6)=4(a-3)
We move all terms to the left:
-2a(a-6)-(4(a-3))=0
We multiply parentheses
-2a^2+12a-(4(a-3))=0
We calculate terms in parentheses: -(4(a-3)), so:
4(a-3)
We multiply parentheses
4a-12
Back to the equation:
-(4a-12)
We get rid of parentheses
-2a^2+12a-4a+12=0
We add all the numbers together, and all the variables
-2a^2+8a+12=0
a = -2; b = 8; c = +12;
Δ = b2-4ac
Δ = 82-4·(-2)·12
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{10}}{2*-2}=\frac{-8-4\sqrt{10}}{-4} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{10}}{2*-2}=\frac{-8+4\sqrt{10}}{-4} $

See similar equations:

| y=7=2y/5 | | 6x-1.5-3x=5/4-(x+2) | | x*6-5=55 | | 6x-1.5-3x=5/4-(x+2( | | 6x-1.5-3x=1.25-(x+2) | | 9x+15-4x=-20 | | 7(-6+2b)=-112 | | 4a+0.75=20 | | 2n+n-3(n+4)=24 | | 1/5w+2=13 | | 2+2x=2+2x | | (3x+14)+(5x-2)=(10x-18) | | -3(x-6)=27 | | -7(1-8n)+7n=308 | | 1/3m+9=5 | | -2x2-5x-2=0 | | 4m-(7m+6)=-m | | 36=9v+6-9v | | 2(x+3)=10x-1 | | 1/2x-12=3 | | (8x+4)^-1=0 | | 10x+5=12x^+6x | | 21+2(m-4)=25 | | 15x+5=18x^+6x | | 5g/7=2/8 | | 10=6y-20 | | 13(x+1)=11x+25 | | 3(k-4)-2(k+2)-13=-23 | | 198=-9(-9+x) | | 16=2x-10*3 | | n^2-3n=130 | | 3(11+n)-3n=33 |

Equations solver categories