If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2=(3/2)(x+3)
We move all terms to the left:
-2-((3/2)(x+3))=0
Domain of the equation: 2)(x+3))!=0We add all the numbers together, and all the variables
x∈R
-((+3/2)(x+3))-2=0
We multiply parentheses ..
-((+3x^2+3/2*3))-2=0
We multiply all the terms by the denominator
-((+3x^2+3-2*2*3))=0
We calculate terms in parentheses: -((+3x^2+3-2*2*3)), so:We get rid of parentheses
(+3x^2+3-2*2*3)
We get rid of parentheses
3x^2+3-2*2*3
We add all the numbers together, and all the variables
3x^2-9
Back to the equation:
-(3x^2-9)
-3x^2+9=0
a = -3; b = 0; c = +9;
Δ = b2-4ac
Δ = 02-4·(-3)·9
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{3}}{2*-3}=\frac{0-6\sqrt{3}}{-6} =-\frac{6\sqrt{3}}{-6} =-\frac{\sqrt{3}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{3}}{2*-3}=\frac{0+6\sqrt{3}}{-6} =\frac{6\sqrt{3}}{-6} =\frac{\sqrt{3}}{-1} $
| 6(2+9k)=34k= | | 5x+12=4x+24 | | 5x-11=-3x+29 | | x2+14x=39 | | 31-7p=-7(p-5) | | 2x+109=85 | | 8n+7=3` | | 2x^2-3x-5=-5 | | 21-7v+v-14=7+6v | | 7(2y-8)=1= | | 7(+2)-10=7x+4 | | 4=⅔(6g+9) | | 90+(4x-8)+(6x+13)=180 | | 1/8(2x+4)=1/4 | | 23x+2=4 | | 6-e-2e-12=-18 | | -25c-8=32 | | 6x+2(x-1)=5(x+2) | | F(15)=2x^2+3 | | F(-3)=2x^2+3 | | 4w-77=104 | | 15=16/0+x | | F(1)=2x^2+3 | | m+14=33 | | 6(2+9k)=34 | | 3-6l+2l-15=32 | | 60.8=32x | | 9w+9=17 | | 51=-4x+11 | | 9x-61=11 | | 96=84+12r | | 8(x-3)+7=2x(4-17) |