-28-4x=-(8x+4)x

Simple and best practice solution for -28-4x=-(8x+4)x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -28-4x=-(8x+4)x equation:



-28-4x=-(8x+4)x
We move all terms to the left:
-28-4x-(-(8x+4)x)=0
We calculate terms in parentheses: -(-(8x+4)x), so:
-(8x+4)x
We multiply parentheses
-8x^2-4x
Back to the equation:
-(-8x^2-4x)
We get rid of parentheses
8x^2+4x-4x-28=0
We add all the numbers together, and all the variables
8x^2-28=0
a = 8; b = 0; c = -28;
Δ = b2-4ac
Δ = 02-4·8·(-28)
Δ = 896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{896}=\sqrt{64*14}=\sqrt{64}*\sqrt{14}=8\sqrt{14}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{14}}{2*8}=\frac{0-8\sqrt{14}}{16} =-\frac{8\sqrt{14}}{16} =-\frac{\sqrt{14}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{14}}{2*8}=\frac{0+8\sqrt{14}}{16} =\frac{8\sqrt{14}}{16} =\frac{\sqrt{14}}{2} $

See similar equations:

| -5(-2c-1)-c=23 | | 44-2(3+4)=-18x | | 4×3d-2=8d-5 | | 43d-2=d-5 | | 3(y=4)=36 | | 2(x)+x=400 | | 1/2x+1/3x+1/4x=13 | | 80+65+x=180 | | b-6+4b=22 | | 18x-36-7x=25 | | 4​(a−6​)=8a−​(4a+24​) | | x2+40x+384=0 | | x/4-14=8 | | 5x+5=32+2x | | 14x-49=4^2 | | 15y+14=25y+6 | | 4(y+4)=-3y-19 | | 19=8x+11-5x | | 4(34x)=52-4x | | 36-8x=17+11x | | 86=32+9c/5 | | -40=-u/3 | | 5000+100x=25000-400x | | 3x-9=7x-6 | | 3(x+5)=-(3x+15) | | 10x+13=3(3x+4) | | 7.2=g=9.1 | | 6+0.29x=0.15x+8 | | 19=v/3+15 | | 8y-10-5y+8=0 | | 16t^2-215t-97=0 | | 1/2(4x-2)-2/3(6x+4)=4 |

Equations solver categories