-24=-6w+4w(w-5)

Simple and best practice solution for -24=-6w+4w(w-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -24=-6w+4w(w-5) equation:



-24=-6w+4w(w-5)
We move all terms to the left:
-24-(-6w+4w(w-5))=0
We calculate terms in parentheses: -(-6w+4w(w-5)), so:
-6w+4w(w-5)
We multiply parentheses
4w^2-6w-20w
We add all the numbers together, and all the variables
4w^2-26w
Back to the equation:
-(4w^2-26w)
We get rid of parentheses
-4w^2+26w-24=0
a = -4; b = 26; c = -24;
Δ = b2-4ac
Δ = 262-4·(-4)·(-24)
Δ = 292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{292}=\sqrt{4*73}=\sqrt{4}*\sqrt{73}=2\sqrt{73}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2\sqrt{73}}{2*-4}=\frac{-26-2\sqrt{73}}{-8} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2\sqrt{73}}{2*-4}=\frac{-26+2\sqrt{73}}{-8} $

See similar equations:

| 16(5-n)+13n=83 | | 6-(x-3)=-4x+3(x+5) | | 8+3x+4x=15-8x | | 4x=42-x | | -3k+k+16k=14 | | 14v=5v=45 | | x+6=2x-8,x | | 7-5x=11x-41 | | -3g-14=-47 | | 4v+v+5=20 | | 18x-53+7x=-328 | | 2.4x+10=9x+8-62x | | 4d-8=-4 | | 6.1h=9.3-3.2( | | 2(v-8)+-8=-4 | | 2x^2-50x-1875=0 | | 3x+7=23+5x | | -3w-7=20 | | 3(x-4=5x-6 | | -4x+11x=9+26 | | -12t+11t+15=12 | | 10p-3=17 | | 10y-9y=18 | | 5(q+3)=15 | | 1=z/3-2 | | 8x+5-6x=14 | | -4(k-14)=-8 | | 5x-4(5-0x)=2(-3+2x) | | -13d-7d=-20 | | 2-13.8x=-8x-(5x+1) | | x/3-x+4/7=6 | | 4x+4=2x=36 |

Equations solver categories