-2/x+1/4x=7/x+10

Simple and best practice solution for -2/x+1/4x=7/x+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2/x+1/4x=7/x+10 equation:



-2/x+1/4x=7/x+10
We move all terms to the left:
-2/x+1/4x-(7/x+10)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: x+10)!=0
x∈R
We get rid of parentheses
-2/x+1/4x-7/x-10=0
We calculate fractions
(-28x-2)/4x^2+x/4x^2-10=0
We multiply all the terms by the denominator
(-28x-2)+x-10*4x^2=0
We add all the numbers together, and all the variables
x+(-28x-2)-10*4x^2=0
Wy multiply elements
-40x^2+x+(-28x-2)=0
We get rid of parentheses
-40x^2+x-28x-2=0
We add all the numbers together, and all the variables
-40x^2-27x-2=0
a = -40; b = -27; c = -2;
Δ = b2-4ac
Δ = -272-4·(-40)·(-2)
Δ = 409
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27)-\sqrt{409}}{2*-40}=\frac{27-\sqrt{409}}{-80} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27)+\sqrt{409}}{2*-40}=\frac{27+\sqrt{409}}{-80} $

See similar equations:

| m÷(-9)=27 | | a+12/8=-3 | | (y+2/5)=13 | | 90+36+3x=180 | | (1/16)x+3=(1/4)x+1 | | (2080x)+260(1.5x)=65000 | | 6-3(n-7)/4=1/2n | | -54=x/15 | | d-24/6=25 | | 8/x=40/12 | | z-314=-314 | | 2m-10=123=3 | | m-53=-67 | | f+86=123 | | .25(x-10)=-4 | | m+42=-14 | | 13(6x+12)−4(x−5)=14 | | -(4x-2)=-5x+7 | | t-3/8=9 | | x/2=21=16 | | 2(2d-4)=d+4 | | 8x-11=-7x+25 | | 18=2y−22 | | 3x=+24≤54 | | 0=8-3n+2 | | 8=x4+6 | | 8≤=x4+6 | | (5x-3)(3-x)=(3-x)(4x-7) | | 8≤x=4+6 | | 2n+2n+40=7n+10 | | 2y=-y/2 | | -19+z=40 |

Equations solver categories