If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2/9x-8/45+1/5x=-63
We move all terms to the left:
-2/9x-8/45+1/5x-(-63)=0
Domain of the equation: 9x!=0
x!=0/9
x!=0
x∈R
Domain of the equation: 5x!=0We add all the numbers together, and all the variables
x!=0/5
x!=0
x∈R
-2/9x+1/5x+63-8/45=0
We calculate fractions
(-1800x^2)/8100x^2+(-1800x)/8100x^2+1620x/8100x^2+63=0
We multiply all the terms by the denominator
(-1800x^2)+(-1800x)+1620x+63*8100x^2=0
We add all the numbers together, and all the variables
(-1800x^2)+1620x+(-1800x)+63*8100x^2=0
Wy multiply elements
(-1800x^2)+510300x^2+1620x+(-1800x)=0
We get rid of parentheses
-1800x^2+510300x^2+1620x-1800x=0
We add all the numbers together, and all the variables
508500x^2-180x=0
a = 508500; b = -180; c = 0;
Δ = b2-4ac
Δ = -1802-4·508500·0
Δ = 32400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{32400}=180$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-180)-180}{2*508500}=\frac{0}{1017000} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-180)+180}{2*508500}=\frac{360}{1017000} =1/2825 $
| .25=8x-2 | | -(7-4x)=10 | | -6m+8=3-7m+8 | | g/3+3=4 | | 2(j-3)=2j-6 | | x-(1/3)+(1/4)=10 | | x=21/1 | | 2p^{2}+2p-1=0 | | 117=x+2x | | 3.1(2w+4)=62 | | x-1/3+1/4=10 | | 8+4/5x=29+1/5x | | -4(-5v+6)=-164 | | 7=5x+5=8=x-5 | | 5(2x+1)=-30 | | (1/7)f-27=8 | | -53+4k=-7 | | 2x+1=4/5x+7 | | V(x)=(17-2x)(11-2x)(x) | | -2(7-y)=20 | | 18.17+4.4w=11.7w-10.1w-17.95 | | X+9=5x+4 | | 132=6(m+6)+6m | | 3(y-8)-2=-4(-5y+9)-9y | | 13=x+9-11 | | −5(−2x+7)−3=52 | | y=2/7(-3)-19/7 | | 12.2x+19.4=-2.7+93.9 | | (1/6)b-9=-4 | | 12x-4=22+10x | | 12y^2+12y-24=0 | | 2(2x-4)=13 |