-2/7k+5/6=-1+2/3k

Simple and best practice solution for -2/7k+5/6=-1+2/3k equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2/7k+5/6=-1+2/3k equation:



-2/7k+5/6=-1+2/3k
We move all terms to the left:
-2/7k+5/6-(-1+2/3k)=0
Domain of the equation: 7k!=0
k!=0/7
k!=0
k∈R
Domain of the equation: 3k)!=0
k!=0/1
k!=0
k∈R
We add all the numbers together, and all the variables
-2/7k-(2/3k-1)+5/6=0
We get rid of parentheses
-2/7k-2/3k+1+5/6=0
We calculate fractions
315k^2/756k^2+(-216k)/756k^2+(-504k)/756k^2+1=0
We multiply all the terms by the denominator
315k^2+(-216k)+(-504k)+1*756k^2=0
Wy multiply elements
315k^2+756k^2+(-216k)+(-504k)=0
We get rid of parentheses
315k^2+756k^2-216k-504k=0
We add all the numbers together, and all the variables
1071k^2-720k=0
a = 1071; b = -720; c = 0;
Δ = b2-4ac
Δ = -7202-4·1071·0
Δ = 518400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{518400}=720$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-720)-720}{2*1071}=\frac{0}{2142} =0 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-720)+720}{2*1071}=\frac{1440}{2142} =80/119 $

See similar equations:

| x/5-34=-36 | | y-9.82=6.5 | | 42=11v-4v | | 6x+11=-7-3x | | y=2*7+3 | | 5(x-6)=3(x+8) | | u+2.11=7.16 | | 24+11x=180 | | 1/9y-3=-18 | | x=-4+2/5 | | 6=2m-4m | | x=-5+3/5 | | y=2*9+4 | | 5=u/3−3 | | x/3+81=84 | | -5+x+9x=-5 | | 10x+9-5x=-19 | | y=2*16+6 | | 5m-10=5m+3 | | 103+x+33=180 | | -5x+63=68 | | 4(w-1)=6w+2-2(-2w-2) | | 32=-8x+5(x+7) | | y=3*8+5 | | 2x÷3-x÷5=-1 | | -6v-16=7(v-6) | | (3x+2)^4-216=0 | | 10+3x2-7=-5 | | 4=64/v | | 6(7+5x)=-18 | | 1x+8=3x+6 | | 4(5x-8)=228 |

Equations solver categories