-2/5x+30+3/5x+20=x

Simple and best practice solution for -2/5x+30+3/5x+20=x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2/5x+30+3/5x+20=x equation:



-2/5x+30+3/5x+20=x
We move all terms to the left:
-2/5x+30+3/5x+20-(x)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We add all the numbers together, and all the variables
-1x-2/5x+3/5x+50=0
We multiply all the terms by the denominator
-1x*5x+50*5x-2+3=0
We add all the numbers together, and all the variables
-1x*5x+50*5x+1=0
Wy multiply elements
-5x^2+250x+1=0
a = -5; b = 250; c = +1;
Δ = b2-4ac
Δ = 2502-4·(-5)·1
Δ = 62520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{62520}=\sqrt{4*15630}=\sqrt{4}*\sqrt{15630}=2\sqrt{15630}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(250)-2\sqrt{15630}}{2*-5}=\frac{-250-2\sqrt{15630}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(250)+2\sqrt{15630}}{2*-5}=\frac{-250+2\sqrt{15630}}{-10} $

See similar equations:

| 4x+4=5x^2 | | 6=-1/3(x-9) | | 11k=12+10k | | 3x+2+x+2+½x+2=69 | | 3y-4(-2)=12 | | 9*j-8=8+9*j | | 3.3h=-4.76-3.5h | | (x−2)(x+1)=4 | | 16+x=3(4+x) | | 3x+2+x+2+1/2x+2=69 | | A=8x−10∘∠B=3x+90∘ | | 5x–8x–14=1 | | x+11/2=-13 | | 55=-v+176 | | 4(x+6)+4=40 | | 5=9p+10-8p | | 6=x/2+14 | | 6x-9-2(1-×)=×+9 | | 3(x-3)+4=-8 | | 3w+3=-16 | | (x-5)(x+7)=x2+x-12 | | (x+6)(x-16)=0 | | x+x+(2x+3)+(2x+3)=360 | | -11+u/6=-8 | | -2g-19=20+11g | | 3x-9=-6-12x | | d+85/(-2)=-3 | | 14+20d=4d-14+18d | | 5x+48=x+12 | | (5x+11)=(x+3) | | -1=x/9+6 | | 8(g-89)=88 |

Equations solver categories