-2/4x+3=1/5x+11

Simple and best practice solution for -2/4x+3=1/5x+11 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2/4x+3=1/5x+11 equation:



-2/4x+3=1/5x+11
We move all terms to the left:
-2/4x+3-(1/5x+11)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 5x+11)!=0
x∈R
We get rid of parentheses
-2/4x-1/5x-11+3=0
We calculate fractions
(-10x)/20x^2+(-4x)/20x^2-11+3=0
We add all the numbers together, and all the variables
(-10x)/20x^2+(-4x)/20x^2-8=0
We multiply all the terms by the denominator
(-10x)+(-4x)-8*20x^2=0
Wy multiply elements
-160x^2+(-10x)+(-4x)=0
We get rid of parentheses
-160x^2-10x-4x=0
We add all the numbers together, and all the variables
-160x^2-14x=0
a = -160; b = -14; c = 0;
Δ = b2-4ac
Δ = -142-4·(-160)·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{196}=14$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-14}{2*-160}=\frac{0}{-320} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+14}{2*-160}=\frac{28}{-320} =-7/80 $

See similar equations:

| 15x+245=4124 | | -2/5x+1=1/5x+11 | | (x+2)^2-(x-3)(x+3)=0 | | 2/5x-8=-1/5x+7 | | 8x=2x=24 | | 90=b1,5(b+2)+15+2b-9 | | 2×+3y=25 | | -7(x+8)=-3(x+3)= | | 4k+7(-4-2k)=-2(k-2)= | | -7(-1+3a)=5(3-5a)= | | 2(x+8)=-3(x+3)= | | -4(v-2)=-4(v-8)-8v= | | 3n-72=2n+20 | | -8(2+7n)=-6n+34= | | 155+10x=230+(-15) | | -8(2+7n)=-6n+32= | | 155+10x=230+-15 | | 9+4x=-9 | | 2(-7a+6)=-16-7a= | | 2/3d+1=16-9 | | -5n-4(-7-4n)=36+7n= | | 2r+7.50=8r+6 | | -(1-5x)+8=-17+2x= | | 13y/4=2y | | 3(7r-7)=-6+6r= | | 2x+4=3x*2 | | -5b+24=-8(b-6)+6b= | | 8+6x=8+8+7+3= | | 5p+5=4+4p= | | 4m+3=13-m= | | 4n+5n+15=5n+7n= | | 6x-2x+8=x+5= |

Equations solver categories