-2/3x+3/5x=-5/4+3

Simple and best practice solution for -2/3x+3/5x=-5/4+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2/3x+3/5x=-5/4+3 equation:



-2/3x+3/5x=-5/4+3
We move all terms to the left:
-2/3x+3/5x-(-5/4+3)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We get rid of parentheses
-2/3x+3/5x-3+5/4=0
We calculate fractions
375x^2/240x^2+(-160x)/240x^2+144x/240x^2-3=0
We multiply all the terms by the denominator
375x^2+(-160x)+144x-3*240x^2=0
We add all the numbers together, and all the variables
375x^2+144x+(-160x)-3*240x^2=0
Wy multiply elements
375x^2-720x^2+144x+(-160x)=0
We get rid of parentheses
375x^2-720x^2+144x-160x=0
We add all the numbers together, and all the variables
-345x^2-16x=0
a = -345; b = -16; c = 0;
Δ = b2-4ac
Δ = -162-4·(-345)·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{256}=16$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16}{2*-345}=\frac{0}{-690} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16}{2*-345}=\frac{32}{-690} =-16/345 $

See similar equations:

| 7(1+2x)=49 | | -9q=-7−10q | | 2x-18=x+54 | | 2c=-3c+7 | | 6x-2+4x=-112 | | X+1.2x=11 | | 8p=2+10p | | 7t+5=6t | | X(x-6)+14=8 | | 6+2r=r | | 5(x-7)-7=-4(-4x+9)-7x | | 6k;k=1/3 | | 3y-6=453y | | 5+4x-7=4x-x-2 | | -9-8g=0 | | 4t-1=3t | | -14=m+8 | | x=3*(9/7-(1/5*X)) | | 3x-14=6x+14 | | 3(n+3)=1/2(6n+4) | | 6x–13=6(x–2) | | 3n+4n-2=3+4n-2 | | 1.5(n-20)=0.5(3n+60) | | 3x-10=-39-4x | | 150=100(x)^12 | | -9=t-10 | | 4x-45=15-2x | | 7=4v-5v | | x+38=23 | | Y=512-0,5x^2 | | 2x-4(x-3)=-7+5x-2 | | 13=7x+2 |

Equations solver categories