-2(x-2)x-4x=3x+1-9x

Simple and best practice solution for -2(x-2)x-4x=3x+1-9x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2(x-2)x-4x=3x+1-9x equation:



-2(x-2)x-4x=3x+1-9x
We move all terms to the left:
-2(x-2)x-4x-(3x+1-9x)=0
We add all the numbers together, and all the variables
-2(x-2)x-4x-(-6x+1)=0
We add all the numbers together, and all the variables
-4x-2(x-2)x-(-6x+1)=0
We multiply parentheses
-2x^2-4x+4x-(-6x+1)=0
We get rid of parentheses
-2x^2-4x+4x+6x-1=0
We add all the numbers together, and all the variables
-2x^2+6x-1=0
a = -2; b = 6; c = -1;
Δ = b2-4ac
Δ = 62-4·(-2)·(-1)
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{7}}{2*-2}=\frac{-6-2\sqrt{7}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{7}}{2*-2}=\frac{-6+2\sqrt{7}}{-4} $

See similar equations:

| -2=2z-6 | | (11x-9)=(7x+9) | | 3(4x-3)-1=12+(-1) | | 5x+10-x=-26 | | 12.50x+20=15x+1525 | | 7(x+2=7x-10 | | -8j+14=-2(j-5) | | w+-59=598 | | 5x+14=133 | | 3(4x-3)-1=12+(-10) | | 60=-30+5x+4x | | -2x+2=4x+14 | | -3p-4=-19+6p | | -5=5-2j | | s−10=35 | | 3+x+x+4+6=180 | | -3x+4x+6x=-14 | | 8x-14=4+2x×=3 | | 669=b+746 | | p+17=88 | | 3(2k−5)−k=4−(3k+7) | | 1/4(7+3z)+7=z+1 | | x+(.30x)=59360 | | 5=7+s | | 3x-7=11x-(8x-1) | | -3p-4=19+6p | | (3x+2)+(5x+10)=180 | | 3(2+6b)=18b+6 | | c/4-(-3)=6 | | 7r=357 | | 7r=356 | | -33=11k |

Equations solver categories