-2(u+6)6u=4(u-3)

Simple and best practice solution for -2(u+6)6u=4(u-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2(u+6)6u=4(u-3) equation:



-2(u+6)6u=4(u-3)
We move all terms to the left:
-2(u+6)6u-(4(u-3))=0
We multiply parentheses
-12u^2-72u-(4(u-3))=0
We calculate terms in parentheses: -(4(u-3)), so:
4(u-3)
We multiply parentheses
4u-12
Back to the equation:
-(4u-12)
We get rid of parentheses
-12u^2-72u-4u+12=0
We add all the numbers together, and all the variables
-12u^2-76u+12=0
a = -12; b = -76; c = +12;
Δ = b2-4ac
Δ = -762-4·(-12)·12
Δ = 6352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6352}=\sqrt{16*397}=\sqrt{16}*\sqrt{397}=4\sqrt{397}$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-76)-4\sqrt{397}}{2*-12}=\frac{76-4\sqrt{397}}{-24} $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-76)+4\sqrt{397}}{2*-12}=\frac{76+4\sqrt{397}}{-24} $

See similar equations:

| 3x-25=-4x+20 | | 67y+2=69 | | 4x+9-2=30-20x-10 | | 3x=-4x+20 | | 3x-10=-4x+20 | | y=1/27-4 | | 5(x-3)-8=4(x+7) | | -5=-7x+3(x-3) | | 6(2+x)+x=-12 | | 15x+6=14x+13 | | (5x+23)+(5x+23)+(4x+36)=180 | | 15x=6=14x+13 | | 5n=511⋅53.​ | | 10+4y=86 | | 5/8+x=11/12 | | 83=20+9h | | 5/8+x=11/1 | | 3x-5=11(2x+17) | | 75=j/8+69 | | 24-6x=6x+7 | | -4r-8(6r-1)=7(-4-8r) | | 4(j-78)=60 | | w-3/8=1/4 | | 2x2-27x+70=0 | | 4(j-48)=60 | | 6(r-92)=18 | | 8y+14=11y-10 | | 60=3x-10 | | 90=5(f+8) | | 3x-15=-4x+20 | | -60=2x+5(3x+22) | | 30=3(y-71) |

Equations solver categories