If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2(6a-1)=-(-5/3)(3a+15)+6
We move all terms to the left:
-2(6a-1)-(-(-5/3)(3a+15)+6)=0
Domain of the equation: 3)(3a+15)+6)!=0We multiply parentheses
a∈R
-12a-(-(-5/3)(3a+15)+6)+2=0
We multiply parentheses ..
-(-(-15a^2-5/3*15)+6)-12a+2=0
We multiply all the terms by the denominator
-(-(-15a^2-5-12a*3*15)+6)+2*3*15)+6)=0
We calculate terms in parentheses: -(-(-15a^2-5-12a*3*15)+6), so:We add all the numbers together, and all the variables
-(-15a^2-5-12a*3*15)+6
We get rid of parentheses
15a^2+12a*3*15+5+6
We add all the numbers together, and all the variables
15a^2+12a*3*15+11
Wy multiply elements
15a^2+540a*1+11
Wy multiply elements
15a^2+540a+11
Back to the equation:
-(15a^2+540a+11)
-(15a^2+540a+11)=0
We get rid of parentheses
-15a^2-540a-11=0
a = -15; b = -540; c = -11;
Δ = b2-4ac
Δ = -5402-4·(-15)·(-11)
Δ = 290940
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{290940}=\sqrt{4*72735}=\sqrt{4}*\sqrt{72735}=2\sqrt{72735}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-540)-2\sqrt{72735}}{2*-15}=\frac{540-2\sqrt{72735}}{-30} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-540)+2\sqrt{72735}}{2*-15}=\frac{540+2\sqrt{72735}}{-30} $
| 39x=182 | | y+1.17=8.17 | | −6−3x−4=−120 | | -7=p-3 | | 2.1=4t | | 4b+5b-8b=13 | | 120÷2x3+5=25 | | -3d+6=9 | | 1/2c=52 | | 4x+5 = 34 | | 9-7n=5.7 | | 19u-19u+u=14 | | -2h+2=10 | | 5g+7=2g-11 | | 8y−10=4+10y | | 1.6h=10.8 | | 11x-5x+2x=4 | | 5x(3×-8)=24×-3 | | 10x=30•9 | | 4y-4=-8(y+2) | | 10x6=x5 | | 7/8=28.8/x | | w=32 | | Y=5/2x^2 | | 9x=30•100 | | 166.375=8s-0.001 | | 8e-12=4e+8 | | 5+(-3y)=-10 | | 4n/3-2=n-7 | | 3x+0=–13 | | 3y3−9y2=0 | | 7w=-12 |