-2(5y-1)-y=-4/y-3

Simple and best practice solution for -2(5y-1)-y=-4/y-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2(5y-1)-y=-4/y-3 equation:



-2(5y-1)-y=-4/y-3
We move all terms to the left:
-2(5y-1)-y-(-4/y-3)=0
Domain of the equation: y-3)!=0
y∈R
We add all the numbers together, and all the variables
-1y-2(5y-1)-(-4/y-3)=0
We multiply parentheses
-1y-10y-(-4/y-3)+2=0
We get rid of parentheses
-1y-10y+4/y+3+2=0
We multiply all the terms by the denominator
-1y*y-10y*y+3*y+2*y+4=0
We add all the numbers together, and all the variables
5y-1y*y-10y*y+4=0
Wy multiply elements
-1y^2-10y^2+5y+4=0
We add all the numbers together, and all the variables
-11y^2+5y+4=0
a = -11; b = 5; c = +4;
Δ = b2-4ac
Δ = 52-4·(-11)·4
Δ = 201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{201}}{2*-11}=\frac{-5-\sqrt{201}}{-22} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{201}}{2*-11}=\frac{-5+\sqrt{201}}{-22} $

See similar equations:

| 16r+23=11r+48 | | -8x+2(-2x-3)=-16-2x | | 27w+32=18w+13 | | X-(19-3x/2)=3 | | 12x+53=20x+13 | | 100°+60°+x=180° | | 100+60+x=180 | | -100u−8(-23.4u−27.33)=35u+1.06+49.9u | | 4(5y-2)=18y | | 3.7(-88x-3)=3.7(7x-30) | | 3(x-4)+2x=-22 | | n(n²-1)=990 | | p-1/4=3/8+p/2 | | x=2/4500000 | | 44-1+7q=10644 | | -2(-7n-8)=39+3n | | 37-18+18+8w=67 | | 22-x=6+3x | | 3•1=72/f-5 | | |x+333.22|=12.78 | | y-15/3=7 | | 6x+5=x^2-2 | | 3p-1=5(5-1)-2(7-2p) | | (z-4)/3=-12 | | 10x-6=2x=10 | | 13x+2(x+5)-7x=-70 | | 8x=12x+120 | | 5d=70= | | 6a/3=12+a | | 13-(-2w)=6+3(11) | | 7x-13=2x-7 | | 4y+-11=29 |

Equations solver categories