-2(5v-7)6v=5+3(2v-2)

Simple and best practice solution for -2(5v-7)6v=5+3(2v-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2(5v-7)6v=5+3(2v-2) equation:



-2(5v-7)6v=5+3(2v-2)
We move all terms to the left:
-2(5v-7)6v-(5+3(2v-2))=0
We multiply parentheses
-60v^2+84v-(5+3(2v-2))=0
We calculate terms in parentheses: -(5+3(2v-2)), so:
5+3(2v-2)
determiningTheFunctionDomain 3(2v-2)+5
We multiply parentheses
6v-6+5
We add all the numbers together, and all the variables
6v-1
Back to the equation:
-(6v-1)
We get rid of parentheses
-60v^2+84v-6v+1=0
We add all the numbers together, and all the variables
-60v^2+78v+1=0
a = -60; b = 78; c = +1;
Δ = b2-4ac
Δ = 782-4·(-60)·1
Δ = 6324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6324}=\sqrt{4*1581}=\sqrt{4}*\sqrt{1581}=2\sqrt{1581}$
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(78)-2\sqrt{1581}}{2*-60}=\frac{-78-2\sqrt{1581}}{-120} $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(78)+2\sqrt{1581}}{2*-60}=\frac{-78+2\sqrt{1581}}{-120} $

See similar equations:

| x-1.2=10 | | 2b(10+3b)=64 | | 5a+2=6a+3 | | 2(3x+5)=2(2x-2) | | 5-35x=75 | | 7+v/6=8 | | 0.3(10x+17)=4(0.2x+5) | | -x^2+21x-68=0 | | 0.3(10x+17)=4(0.2+5) | | 4(2n-9)=-12 | | 11x+32=7x-14 | | 1/2(3n+24)=0 | | 2.5x+4.7=8.8 | | 3(5-n)=-9 | | -5n-12=28 | | (25-a)+7=3 | | 4j=60 | | d+4=60 | | 2(3-x)-12+4X=26 | | r+15=85 | | h-27=5 | | 3.9g+10=1.9+14 | | -4-2/3x=-8 | | 91=g+5 | | 52=z-45 | | -69x+32=-60x-32 | | 6x+-9=5 | | 2x-5=8x+5 | | 18+7=x+28 | | 10=16k-9 | | 175m-75m+53.350=55.275-175m | | 8x=111+21 |

Equations solver categories