-2(3x+1)=1-1/2x+5

Simple and best practice solution for -2(3x+1)=1-1/2x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2(3x+1)=1-1/2x+5 equation:



-2(3x+1)=1-1/2x+5
We move all terms to the left:
-2(3x+1)-(1-1/2x+5)=0
Domain of the equation: 2x+5)!=0
x∈R
We add all the numbers together, and all the variables
-2(3x+1)-(-1/2x+6)=0
We multiply parentheses
-6x-(-1/2x+6)-2=0
We get rid of parentheses
-6x+1/2x-6-2=0
We multiply all the terms by the denominator
-6x*2x-6*2x-2*2x+1=0
Wy multiply elements
-12x^2-12x-4x+1=0
We add all the numbers together, and all the variables
-12x^2-16x+1=0
a = -12; b = -16; c = +1;
Δ = b2-4ac
Δ = -162-4·(-12)·1
Δ = 304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{304}=\sqrt{16*19}=\sqrt{16}*\sqrt{19}=4\sqrt{19}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{19}}{2*-12}=\frac{16-4\sqrt{19}}{-24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{19}}{2*-12}=\frac{16+4\sqrt{19}}{-24} $

See similar equations:

| 7x-5;x=6 | | 180-32=n | | t-25=2t-75 | | 8s+1=s+13 | | 9f+28=73 | | 9v-29=2v+27 | | x-34=97 | | 3/4x-3.2=5.3-2x/7 | | x62+8x=10 | | t=t+1 | | x/8=17+42 | | 7a-a=-11 | | 8p+58=6p+10 | | 13x-5=10x+3 | | -5-3e=7 | | 9v+10=19v | | 2p+96=6p+36 | | -5=-6.9+c | | x+x+1/2x=180 | | 2u+41=3u+33 | | 12+0.25x-15=-18-0.50x | | 12y+5-7y=20+2y | | 7t+10=7t-14 | | 5w-9=12-2w | | 5y-7+2y=3y+13 | | 3y-41=2y | | 14+4x+5=8x+7 | | 5.2v=-62.4 | | 5x+11+3x=6x+27 | | 9u-30=12u-45 | | w=15+-19 | | (x-3)²-169=0 |

Equations solver categories