-1=4(3-x2)

Simple and best practice solution for -1=4(3-x2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1=4(3-x2) equation:



-1=4(3-x2)
We move all terms to the left:
-1-(4(3-x2))=0
We add all the numbers together, and all the variables
-(4(-1x^2+3))-1=0
We calculate terms in parentheses: -(4(-1x^2+3)), so:
4(-1x^2+3)
We multiply parentheses
-4x^2+12
Back to the equation:
-(-4x^2+12)
We get rid of parentheses
4x^2-12-1=0
We add all the numbers together, and all the variables
4x^2-13=0
a = 4; b = 0; c = -13;
Δ = b2-4ac
Δ = 02-4·4·(-13)
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{13}}{2*4}=\frac{0-4\sqrt{13}}{8} =-\frac{4\sqrt{13}}{8} =-\frac{\sqrt{13}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{13}}{2*4}=\frac{0+4\sqrt{13}}{8} =\frac{4\sqrt{13}}{8} =\frac{\sqrt{13}}{2} $

See similar equations:

| 4x+8+6x=68 | | -4(r+2)=4(2−2r)4 | | 2x-10+7x=-1 | | 2/16=116/x | | y=24= | | Y=-6x-17,5 | | ((x-6)^(2/3))=4 | | x/4000=25/40 | | 25/40=x/4000 | | Y=2x-1/5 | | X+2x+3x-5=19 | | (23/5x)+1=(2/x^2) | | 30+6w=2w | | z-476=326 | | -5x^2+30=0 | | (4(2x-3)=(6+2x) | | 4=x+8-7 | | 3x+23+95+(9x-6)+(7x-4)=540 | | n÷8=9n= | | (3x+4)+(5x–6)= | | 15+n=15n= | | (x+5)=(2(x-4)) | | X°+50°+y°=180° | | 5.6/y+5.6=4/5 | | 50=5n-3-8n-7 | | -9(x+8)^2-27=0 | | x=4(3.14)(1296) | | -10+y=18 | | 2^(x+3)=16 | | -3x+14=-x-12 | | 15−16n=16−1 | | 3+6(n+4)=49 |

Equations solver categories