-18j(-9j)+(-11)+j-(-6j)+(-6)=20

Simple and best practice solution for -18j(-9j)+(-11)+j-(-6j)+(-6)=20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -18j(-9j)+(-11)+j-(-6j)+(-6)=20 equation:



-18j(-9j)+(-11)+j-(-6j)+(-6)=20
We move all terms to the left:
-18j(-9j)+(-11)+j-(-6j)+(-6)-(20)=0
determiningTheFunctionDomain -18j(-9j)+j-(-6j)-20+(-11)+(-6)=0
We add all the numbers together, and all the variables
j-18j(-9j)-(-6j)-37=0
We multiply parentheses
162j^2+j-(-6j)-37=0
We get rid of parentheses
162j^2+j+6j-37=0
We add all the numbers together, and all the variables
162j^2+7j-37=0
a = 162; b = 7; c = -37;
Δ = b2-4ac
Δ = 72-4·162·(-37)
Δ = 24025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{24025}=155$
$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-155}{2*162}=\frac{-162}{324} =-1/2 $
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+155}{2*162}=\frac{148}{324} =37/81 $

See similar equations:

| -5(-4x+4))=160 | | 6x+46=1x-2 | | 46x+6x=2-3x-2x | | 4x-7=0.3(x+2)+2.11 | | 8(0.32)^t=1 | | 5u+12=47 | | y/3-10=29 | | 24=x/2-13 | | 13+n=8+n | | -20v+7v-9v-(-15v)-(-12v)=-20 | | 7/6x+42=-84 | | p-p+3p+2p-2=8 | | 7X+7=5x=21 | | 8x-16=120 | | 162x=2 | | 6x+24=2x+15 | | 23-7=16-n | | 2x^2+2x-12=0. | | 81+54+c=1 | | 3y(5y+2)+(-5y-2)=0 | | 5x+26=12x37 | | 4(2x+20)=35 | | 14-n=28-17 | | 2x-57=493 | | -1x+9=x | | 5a^2=75 | | -1x+10=1 | | -16-6x=-7(x+3) | | X/2+4/5=2x/5+1 | | 7h-7=5(h-2)-5 | | X/9-1/6=2x/9-1/2 | | -5*2.7^(x)-3=24 |

Equations solver categories