-18.9(3.4x+9)=20/9x+2.5

Simple and best practice solution for -18.9(3.4x+9)=20/9x+2.5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -18.9(3.4x+9)=20/9x+2.5 equation:



-18.9(3.4x+9)=20/9x+2.5
We move all terms to the left:
-18.9(3.4x+9)-(20/9x+2.5)=0
Domain of the equation: 9x+2.5)!=0
x∈R
We multiply parentheses
-56.7x-(20/9x+2.5)-170.1=0
We get rid of parentheses
-56.7x-20/9x-2.5-170.1=0
We multiply all the terms by the denominator
-(56.7x)*9x-(2.5)*9x-(170.1)*9x-20=0
We add all the numbers together, and all the variables
-(+56.7x)*9x-(2.5)*9x-(170.1)*9x-20=0
We multiply parentheses
-504x^2-22.5x-1530.9x-20=0
We add all the numbers together, and all the variables
-504x^2-1553.4x-20=0
a = -504; b = -1553.4; c = -20;
Δ = b2-4ac
Δ = -1553.42-4·(-504)·(-20)
Δ = 2372731.56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1553.4)-\sqrt{2372731.56}}{2*-504}=\frac{1553.4-\sqrt{2372731.56}}{-1008} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1553.4)+\sqrt{2372731.56}}{2*-504}=\frac{1553.4+\sqrt{2372731.56}}{-1008} $

See similar equations:

| 13k-27=13 | | 6^x+3=50 | | 2x−1=2x+3 | | 12x-116=60+4x | | 2^(5x-7)=15 | | -5x-23+3x=-24 | | 6x^2-2x-12=-2 | | 4x+44=8x+4 | | 6b=3b+30 | | x-52/x=12 | | 4x+9+8x-27=180 | | 5y^2+2y^2-10y-12y+3=0 | | 8f=-64= | | x-x/52=12 | | 0=17x^2-76x-70 | | -{5x-(3x+1)}=-6-{3(2x-4)-2x} | | x=42-5x | | -3x^2+8x+13=-2 | | x+1/10=8/40 | | 10x^2+7=927 | | 9y+4=11y | | x/37=30 | | 2x^2+9=-4 | | 15m+45=259 | | 0,9*1,2x-4=x | | 8x^2-1=5x | | r/6-37=41 | | x^2-103x-70=0 | | 20x-4=x+7 | | Z-7/8-2=3z+5 | | 18x-33=192+5x | | 2x^2-5x-5=-3x^2 |

Equations solver categories