If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+80x=48
We move all terms to the left:
-16x^2+80x-(48)=0
a = -16; b = 80; c = -48;
Δ = b2-4ac
Δ = 802-4·(-16)·(-48)
Δ = 3328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3328}=\sqrt{256*13}=\sqrt{256}*\sqrt{13}=16\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-16\sqrt{13}}{2*-16}=\frac{-80-16\sqrt{13}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+16\sqrt{13}}{2*-16}=\frac{-80+16\sqrt{13}}{-32} $
| 5(5n-5)=225 | | 11.5q=-14.8+10.7q | | 18+5w=w-16+2w | | 5^(5x-2)=15 | | 4+5x+8x=10 | | 9z-15=11z+17 | | 9z−15=11z+17 | | 4x+7x=8x | | −6x−2x=5 | | -j=-12j+11 | | 12.7-11.07-10.5w=-12.4w-12.81 | | -5t+4=14-4t | | -19-11c=-12c | | -15+2r=20+4r-1 | | -9d-9=8d+8 | | 6-7w=6+10w | | -18y+27=18 | | 6−7w=6+10w | | 1-2s=5+4s-10s | | m÷4+6=3 | | -3z-10=-5z | | -8-9z=-5z | | 9y-4=-7(y-4) | | 4q-1=-6+5q | | -5c=-6c-10 | | -5t=-5-4t | | 2(x-6)=6x-8 | | 0.6(10x+24)=4.4(0.2x+5) | | 9y-7=28=56£ | | -2−9w=-8w | | 6x-(4.4(0.2x+5)+14.4=0 | | 0.6(10x+24)=4.4(0.2x+5 |