If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+64x+60=0
a = -16; b = 64; c = +60;
Δ = b2-4ac
Δ = 642-4·(-16)·60
Δ = 7936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7936}=\sqrt{256*31}=\sqrt{256}*\sqrt{31}=16\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-16\sqrt{31}}{2*-16}=\frac{-64-16\sqrt{31}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+16\sqrt{31}}{2*-16}=\frac{-64+16\sqrt{31}}{-32} $
| R(x)=4x-0.01x^2 | | 5x-9=17x+4 | | 2b-3(-b+12)=1.5 | | 16x^2+64x+160=0 | | 3u+4=48 | | 17=2c-88 | | -10x+100=5 | | .012=-0.4x+20 | | 20=9g+2 | | 1/5(300-10e)=60 | | r-3=-15-r | | 5x+1x+54= | | 12-4n=-4 | | H(2x+5)=8x+15 | | 9=-7-a/4 | | y/2-16=7 | | 11-6a=35 | | -2r+3=1-4r | | .012=0.4x+20 | | 2^(6x)=64 | | 1/4(-x+2)=4(2x+4) | | .5x+8=14 | | 6(v+2)-8v=26 | | 27x^2+44=0 | | -4v-3=-5v+v | | 5x+5=3x+-1 | | 3x+15-9=2(x+2)-3x=-4 | | 5t-3=-3+5t | | -4d+3=-3d+9 | | 3b+1/5+62=180 | | 5x-5=3x+1-x | | 3b+62-1/5=180 |