If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+320t-1538=0
a = -16; b = 320; c = -1538;
Δ = b2-4ac
Δ = 3202-4·(-16)·(-1538)
Δ = 3968
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3968}=\sqrt{64*62}=\sqrt{64}*\sqrt{62}=8\sqrt{62}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(320)-8\sqrt{62}}{2*-16}=\frac{-320-8\sqrt{62}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(320)+8\sqrt{62}}{2*-16}=\frac{-320+8\sqrt{62}}{-32} $
| 4v+5=1 | | -1/2x+30=-2x+3 | | 20=-1d+6 | | 22n-11+12n-8=180 | | 7x-35=2x-7 | | -16t2+320=1538 | | 6x+3/5=3x+9 | | 7x-35=5x-28 | | -7(6-8k)=126 | | -18=9x—9 | | r^2-17=4r | | 15-6y+5y=11 | | x-45=23 | | 83=x−113 | | 27=-6k-9 | | !/3(x+4)=5/6(2x-1) | | 83=x−11/3 | | 5x+18=x+16 | | X+x×2/3=70 | | 10w-6w=24 | | -5x-14x=9 | | 1/4x-22=8 | | x+1+180=180 | | -5x-2(7x)=9 | | 6(2x+8)=(7x+14) | | 6x-2=-3x+7 | | 5x+3+2x=3x-7+3x | | 4a-4=3a-3 | | (x/2)+1=(-1/4) | | r^2+16r+10=0 | | x/7-12=36 | | 3(-6-5n)=-123 |