-14+5x=32x(x-28)+18

Simple and best practice solution for -14+5x=32x(x-28)+18 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -14+5x=32x(x-28)+18 equation:



-14+5x=32x(x-28)+18
We move all terms to the left:
-14+5x-(32x(x-28)+18)=0
We calculate terms in parentheses: -(32x(x-28)+18), so:
32x(x-28)+18
We multiply parentheses
32x^2-896x+18
Back to the equation:
-(32x^2-896x+18)
We get rid of parentheses
-32x^2+5x+896x-18-14=0
We add all the numbers together, and all the variables
-32x^2+901x-32=0
a = -32; b = 901; c = -32;
Δ = b2-4ac
Δ = 9012-4·(-32)·(-32)
Δ = 807705
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{807705}=\sqrt{9*89745}=\sqrt{9}*\sqrt{89745}=3\sqrt{89745}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(901)-3\sqrt{89745}}{2*-32}=\frac{-901-3\sqrt{89745}}{-64} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(901)+3\sqrt{89745}}{2*-32}=\frac{-901+3\sqrt{89745}}{-64} $

See similar equations:

| ½m-4=1 | | 1-710.t=28 | | -5(6–8n)+3=-7(-3–7n)– | | 12.45x-102.45=-1275 | | m÷3.5=-1.5 | | 1000+200+10*20=20x | | 12.45x-102.45=-1275.5025 | | P=70n–n2 | | 9(x-4)=3(x+6) | | 5n+5+9n=-4(n–5)–3(4n+1) | | -3(x-5)=4(x-7) | | –c–56=1 | | -3(x-5)=4(x-7 | | n/3-3=-12 | | 64347878787843436473863763764=74834784727474238x | | 1.3x=(1/2) | | –7k−–12k=–20 | | 27^x=9^x^-^3 | | .4x+5x–5=6–9+11x | | 9m-7m=10 | | 1000+10x=60x | | 2y-5=14 | | (-22)=6+x | | (x+5x/100)=300000 | | -7+6x=−31 | | (-10)+x=(-10) | | (x+5/100)=300000 | | z+23=167z | | 2y-14=2(8-y) | | 4(c+3.3)=28 | | 9p-1=-91 | | −9+2x=11 |

Equations solver categories