-12/5x+-2/3x=-31/75

Simple and best practice solution for -12/5x+-2/3x=-31/75 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -12/5x+-2/3x=-31/75 equation:



-12/5x+-2/3x=-31/75
We move all terms to the left:
-12/5x+-2/3x-(-31/75)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
-12/5x-2/3x-(-31/75)=0
We get rid of parentheses
-12/5x-2/3x+31/75=0
We calculate fractions
1395x^2/7875x^2+(-18900x)/7875x^2+(-5250x)/7875x^2=0
We multiply all the terms by the denominator
1395x^2+(-18900x)+(-5250x)=0
We get rid of parentheses
1395x^2-18900x-5250x=0
We add all the numbers together, and all the variables
1395x^2-24150x=0
a = 1395; b = -24150; c = 0;
Δ = b2-4ac
Δ = -241502-4·1395·0
Δ = 583222500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{583222500}=24150$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24150)-24150}{2*1395}=\frac{0}{2790} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24150)+24150}{2*1395}=\frac{48300}{2790} =17+29/93 $

See similar equations:

| y+257=79 | | 202+5x=360 | | h-79/9=2 | | 76=2x+x+(12+x) | | 9x(3x5)=(9x3)x5 | | -10m-14=-11m-3 | | (5x+5)(5(4x)+25=180 | | 6(x-5)=-3(x-6)+6x | | 19-6r+10r-5=3 | | -10=-10(r-90) | | z/29=-5 | | 14=z/0.6 | | 1/4(x+12)=21/4x=-10x=-40 | | 8a+2=6 | | 50(0.5^x)=0 | | -15.75=2.5x | | -r+10-7r=-10+2r | | 6(u-91)=18 | | -5=-4p+-p | | A+30=7a-12 | | 19-6r=10r-5 | | -3c+-17=1 | | 96=4(u+12) | | 6=-10x+2+10x | | -9=-5o-4o | | 82=6x-8 | | 8b+6=10b-8 | | 3m+4=31m= | | 7(3n-8)+10=-4 | | 21/3x-2=-16 | | j/19=-6 | | -4=-2a+-4a |

Equations solver categories