-12/3x-11/7x=-59/49

Simple and best practice solution for -12/3x-11/7x=-59/49 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -12/3x-11/7x=-59/49 equation:



-12/3x-11/7x=-59/49
We move all terms to the left:
-12/3x-11/7x-(-59/49)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
We get rid of parentheses
-12/3x-11/7x+59/49=0
We calculate fractions
8673x^2/4116x^2+(-16464x)/4116x^2+(-6468x)/4116x^2=0
We multiply all the terms by the denominator
8673x^2+(-16464x)+(-6468x)=0
We get rid of parentheses
8673x^2-16464x-6468x=0
We add all the numbers together, and all the variables
8673x^2-22932x=0
a = 8673; b = -22932; c = 0;
Δ = b2-4ac
Δ = -229322-4·8673·0
Δ = 525876624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{525876624}=22932$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22932)-22932}{2*8673}=\frac{0}{17346} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22932)+22932}{2*8673}=\frac{45864}{17346} =2+38/59 $

See similar equations:

| 3t+10=-4t | | 9j=8j–3 | | -9c=-10c-9 | | 8x-5=25 | | 4x+20x-2=6(4+2) | | x+83=-3 | | 2t+4=t | | m-7/8=-10 | | 16.50x+18.75x=274.60 | | 30x-8=30x+40 | | 4(2x-9)=3 | | 2.25=1.33(b-2) | | 4x+20x-2=6(4x+12 | | 2x-4(x-2)=-6+3x+4 | | -1=x-8+7 | | 6.04=7.1+x-3.24 | | 3/5h-6+4/5h-3/5h=-3.2 | | 3a-22=3+4a | | x3-8x2+16x=0 | | 10(2m-1)=12+16m | | 3x/7-11/7-2=0 | | 2x-4(x-2)=-6=+3x+4 | | 3(x+3)=x-4 | | -9(8y+5)=-26.5 | | 28+r-34=18 | | 15y+14=2(5y+6 | | 4x+9=9x+6 | | 3x/8+4=1/2 | | 3y-5=2(3y-5) | | 7-5x=3+4x | | -1=x—8+7 | | 5(n+2)=⅗(5+10n) |

Equations solver categories