-11x+10x(x+10)=4-5(2x+11)

Simple and best practice solution for -11x+10x(x+10)=4-5(2x+11) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -11x+10x(x+10)=4-5(2x+11) equation:



-11x+10x(x+10)=4-5(2x+11)
We move all terms to the left:
-11x+10x(x+10)-(4-5(2x+11))=0
We multiply parentheses
10x^2-11x+100x-(4-5(2x+11))=0
We calculate terms in parentheses: -(4-5(2x+11)), so:
4-5(2x+11)
determiningTheFunctionDomain -5(2x+11)+4
We multiply parentheses
-10x-55+4
We add all the numbers together, and all the variables
-10x-51
Back to the equation:
-(-10x-51)
We add all the numbers together, and all the variables
10x^2+89x-(-10x-51)=0
We get rid of parentheses
10x^2+89x+10x+51=0
We add all the numbers together, and all the variables
10x^2+99x+51=0
a = 10; b = 99; c = +51;
Δ = b2-4ac
Δ = 992-4·10·51
Δ = 7761
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(99)-\sqrt{7761}}{2*10}=\frac{-99-\sqrt{7761}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(99)+\sqrt{7761}}{2*10}=\frac{-99+\sqrt{7761}}{20} $

See similar equations:

| 1/6(12z-10)=2z-3 | | 5x+9x=252 | | 8(w-87)=24 | | 40=3m+4 | | 6x-3=7x-5x+6 | | 3÷(3b+4)=2÷(b-4) | | 5(w-76)=70 | | 35=(g-8)/2.78,79,80,81 | | x+22+5x+86=90 | | -7m-25=-8(8m-4) | | k(6)=-54 | | 20(500-t)^2=0 | | 4/9x+1/4=50 | | 20(500-t)=0 | | 4x-2(3x-5)=8x=50 | | -10=2(5a+4) | | 4+7x=x+46 | | -9h-12=4h-8 | | 1.5x+5.5=100 | | 3/(3b+4)=2/(b-4) | | 2t+4+8=2 | | 4x+2+5x-7=58 | | 8n-8=-40 | | -4(x-2)=-(-2+x | | 106v=-104 | | 6+3(1-x)=6x+5(x-1) | | r+19/3=10 | | -10-3n=-8n | | (x/5)=1.5 | | 1-3j+j=5 | | -4(2n-1)+7n=19+2(n+6) | | t-13=7{10,13,17,20} |

Equations solver categories