If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-118=-5(4+7x)7x
We move all terms to the left:
-118-(-5(4+7x)7x)=0
We add all the numbers together, and all the variables
-(-5(7x+4)7x)-118=0
We calculate terms in parentheses: -(-5(7x+4)7x), so:We get rid of parentheses
-5(7x+4)7x
We multiply parentheses
-245x^2-140x
Back to the equation:
-(-245x^2-140x)
245x^2+140x-118=0
a = 245; b = 140; c = -118;
Δ = b2-4ac
Δ = 1402-4·245·(-118)
Δ = 135240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{135240}=\sqrt{196*690}=\sqrt{196}*\sqrt{690}=14\sqrt{690}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(140)-14\sqrt{690}}{2*245}=\frac{-140-14\sqrt{690}}{490} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(140)+14\sqrt{690}}{2*245}=\frac{-140+14\sqrt{690}}{490} $
| 5(w+6)=-3w-18 | | 13x+15=x+39 | | (e+3)×5=30 | | -9u-49=-2(u-7) | | 0=j+59/7 | | -5(v+3)=-7v+3 | | 4(2x+9)=(2x+6) | | 4r+23=87 | | 8v-23=5(v-4) | | 2^x+4=36 | | -(2(x)-3)+4=-5x+2(3(x)+5) | | 7(k+4)=42 | | (3-x)*5+8=15 | | 6+17x=15+-15+15x | | (x/27)=4 | | 4.7=-8-7y | | 3^x^2=402 | | 5((x)-3)+8=14x+2 | | 8+3g=11 | | 5y+3=1= | | 13.5=25x | | -(x−3)=2(3−x) | | -65x=-13 | | 5x+17=4(3-1) | | 3(2(x)-14.5)=24.9 | | c-65/3=8 | | 13-3f=10 | | -4((x)+5)+8(x)=48 | | (-5/3x)=6 | | 0.89(x)-8.75=21-0.86(x | | 10k+14k-12k=432 | | 10+11=3y |