-11+11r(6r+4)=44+10r

Simple and best practice solution for -11+11r(6r+4)=44+10r equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -11+11r(6r+4)=44+10r equation:



-11+11r(6r+4)=44+10r
We move all terms to the left:
-11+11r(6r+4)-(44+10r)=0
We add all the numbers together, and all the variables
11r(6r+4)-(10r+44)-11=0
We multiply parentheses
66r^2+44r-(10r+44)-11=0
We get rid of parentheses
66r^2+44r-10r-44-11=0
We add all the numbers together, and all the variables
66r^2+34r-55=0
a = 66; b = 34; c = -55;
Δ = b2-4ac
Δ = 342-4·66·(-55)
Δ = 15676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{15676}=\sqrt{4*3919}=\sqrt{4}*\sqrt{3919}=2\sqrt{3919}$
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-2\sqrt{3919}}{2*66}=\frac{-34-2\sqrt{3919}}{132} $
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+2\sqrt{3919}}{2*66}=\frac{-34+2\sqrt{3919}}{132} $

See similar equations:

| A-5+8=-3+3a-8a | | -11r+11(6r+4)=44 | | -r-11=r-1+2 | | 1-6a=7-5a | | -2x-54=-9x+65 | | 2x^2+37x+33=0 | | -4n+4n+15=-7n-3+4 | | 18/60=b/5b-1.5 | | 2/9v-4/9=2 | | 7x+3=9x+1 | | 185m=12 | | 10(3/4)(x+8)=10(1/3)(x+27) | | 9c+4=5c+14+13c | | 9x+9=7x+13 | | 3(x-2)-8=40 | | 12x+12=3x+24 | | H(t)=-t^2+4/3t+1/4 | | n-3.3=12.3 | | 12x+24=3x+24 | | 4n+7=21 | | (5v-9)(3+v)=0 | | 2+7x=6x+4 | | 1/3x+1/2=7 | | -4n+4n+15=-7-3+4 | | -7+6x=7x-85 | | (2b+8)÷5=-12 | | 0=2x^2+8x+7 | | 9+x+x=25 | | 0.4y=0.08 | | 0.2x-0.4=-0.8 | | (4n+8)^1/2=n+3 | | -4n+4n+15=-6n-3+4 |

Equations solver categories