-11+10p(p+10)=2(2p+11)+4

Simple and best practice solution for -11+10p(p+10)=2(2p+11)+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -11+10p(p+10)=2(2p+11)+4 equation:



-11+10p(p+10)=2(2p+11)+4
We move all terms to the left:
-11+10p(p+10)-(2(2p+11)+4)=0
We multiply parentheses
10p^2+100p-(2(2p+11)+4)-11=0
We calculate terms in parentheses: -(2(2p+11)+4), so:
2(2p+11)+4
We multiply parentheses
4p+22+4
We add all the numbers together, and all the variables
4p+26
Back to the equation:
-(4p+26)
We get rid of parentheses
10p^2+100p-4p-26-11=0
We add all the numbers together, and all the variables
10p^2+96p-37=0
a = 10; b = 96; c = -37;
Δ = b2-4ac
Δ = 962-4·10·(-37)
Δ = 10696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10696}=\sqrt{4*2674}=\sqrt{4}*\sqrt{2674}=2\sqrt{2674}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-2\sqrt{2674}}{2*10}=\frac{-96-2\sqrt{2674}}{20} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+2\sqrt{2674}}{2*10}=\frac{-96+2\sqrt{2674}}{20} $

See similar equations:

| 3x+4+x+36=180 | | m-83=24 | | 0x-9=2-4x-1 | | -5+6x+-1=7x | | F(3)=-6x+2 | | -(7-4x)-5=-16 | | 3p+14=22(p=12 | | 5-t-3=2t-2+13 | | 16b+12+2b+2b=3b-33 | | 4t-7t+2=0 | | -3(x-2)=-2(x+10) | | -5+k=-20 | | 3x+-2(x-5)=25 | | 5x+22+x+6x-12=180 | | 1/3(9v-6)=5 | | -3(10x+10)=4(-8x-3) | | 7-v(-5)=26 | | (3x-7)=86 | | (3x+62)+(89-6x)=180 | | (14x+2)=(10x+24) | | 7p-10=10(-p-6)-3(-6-7p) | | (3x+62)=(89-6x) | | 11/y=2/6 | | 3(y+6)-2=37 | | 1.8x+3.2=19.4 | | 3/4q-7=4 | | 1.8x=3.2=194 | | (8x+15)=115 | | (8^2y)-10(8^y)+16=0 | | -20=-5(+2z) | | 18=7u=2u | | 20=13u-9u |

Equations solver categories