If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-10b=-4/b
We move all terms to the left:
-10b-(-4/b)=0
Domain of the equation: b)!=0We get rid of parentheses
b!=0/1
b!=0
b∈R
-10b+4/b=0
We multiply all the terms by the denominator
-10b*b+4=0
Wy multiply elements
-10b^2+4=0
a = -10; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-10)·4
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*-10}=\frac{0-4\sqrt{10}}{-20} =-\frac{4\sqrt{10}}{-20} =-\frac{\sqrt{10}}{-5} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*-10}=\frac{0+4\sqrt{10}}{-20} =\frac{4\sqrt{10}}{-20} =\frac{\sqrt{10}}{-5} $
| 2x/2=1/2 | | (1.9*10^3)*(2.5*10^x)=4.75*10^9 | | m+52=–1 | | 2x−33=3(x+4)−4x | | 3x+6=−6x^2 | | 18-(4-x=35 | | 8c=5.6 | | (19*10^3)*(2.5*10^x)=4.75*10^9 | | -10=4/b | | 147=12/5x | | 113/8=2(w+4/3w)+0.875 | | 10.5+40i=12.95+35i | | x+x+15+x-45=180 | | 4(1-6x)+6(1+5x=58 | | 2k−33=3(k+4)−4k | | 3.2=x÷69 | | 13x+28=5x−20 | | -0.2z=1.6 | | 4(x+6)=-15 | | 9(3x+2)=7x+6 | | -13=-24-x | | (m)/(9)-1=-5 | | x/19=4 | | -12.2x-13.4x=179.2 | | 3^4=9^2x | | -1+2x=2x-3 | | 6x+13+10x-7=45 | | 3(2x-5)=-24 | | -2.3+78=9.7x | | 24−d=10d−9 | | 5x+3x+x=27 | | −5z^2−3z−11=6z^2 |