-1/z+4/3z=2/z-5

Simple and best practice solution for -1/z+4/3z=2/z-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1/z+4/3z=2/z-5 equation:



-1/z+4/3z=2/z-5
We move all terms to the left:
-1/z+4/3z-(2/z-5)=0
Domain of the equation: z!=0
z∈R
Domain of the equation: 3z!=0
z!=0/3
z!=0
z∈R
Domain of the equation: z-5)!=0
z∈R
We get rid of parentheses
-1/z+4/3z-2/z+5=0
We calculate fractions
(-6z-1)/3z^2+4z/3z^2+5=0
We multiply all the terms by the denominator
(-6z-1)+4z+5*3z^2=0
We add all the numbers together, and all the variables
4z+(-6z-1)+5*3z^2=0
Wy multiply elements
15z^2+4z+(-6z-1)=0
We get rid of parentheses
15z^2+4z-6z-1=0
We add all the numbers together, and all the variables
15z^2-2z-1=0
a = 15; b = -2; c = -1;
Δ = b2-4ac
Δ = -22-4·15·(-1)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{64}=8$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-8}{2*15}=\frac{-6}{30} =-1/5 $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+8}{2*15}=\frac{10}{30} =1/3 $

See similar equations:

| (x+4)-3=11 | | 1=3x-x=x-4+2x | | 16=-6x+2(x+6) | | x+7/2=x+5/1.6 | | 2d=5d | | 1.20x=3.5 | | 39=3m-12= | | 3(3x-40)=15+4 | | 3(3x-40)=15+45 | | 12=5x-9-2 | | 2(5x+9)=-47+5 | | 3(t-6)+12=6(t+1)-3t | | 2x=3x+1-x | | (-2x+18)x=40 | | 6x+8=-10x-20 | | 2.3x-9=2.8x-3 | | 8(x−5)=8x+40 | | 7x-6=9x+12 | | x-(5x-1)/2=3x/5+1 | | 9q^2-6q=8q^2-8q+35 | | 3-1.6x=3.9x+14 | | 10+6x-4=-15+9x-3x | | 12-3.6x=-1-2.6x | | 3y+5y+8y=y | | 3x+2+6x-7=2-10x-3 | | 5(x-4)+5=2x+3(-5+x) | | 5^3x=0.75^x-8 | | 10+9=2(180-x) | | 3+3x-1=3x+4 | | 6+45x=20x | | 10x+35=115 | | 3(a=3)=2(a-4) |

Equations solver categories