If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-1/7v+2.8=1.4v-3.1v+2.8
We move all terms to the left:
-1/7v+2.8-(1.4v-3.1v+2.8)=0
Domain of the equation: 7v!=0We add all the numbers together, and all the variables
v!=0/7
v!=0
v∈R
-1/7v-(-1.7v+2.8)+2.8=0
We get rid of parentheses
-1/7v+1.7v-2.8+2.8=0
We multiply all the terms by the denominator
(1.7v)*7v-(2.8)*7v+(2.8)*7v-1=0
We add all the numbers together, and all the variables
(+1.7v)*7v-(2.8)*7v+(2.8)*7v-1=0
We multiply parentheses
7v^2-19.6v+19.6v-1=0
We add all the numbers together, and all the variables
7v^2-1=0
a = 7; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·7·(-1)
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{7}}{2*7}=\frac{0-2\sqrt{7}}{14} =-\frac{2\sqrt{7}}{14} =-\frac{\sqrt{7}}{7} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{7}}{2*7}=\frac{0+2\sqrt{7}}{14} =\frac{2\sqrt{7}}{14} =\frac{\sqrt{7}}{7} $
| 2(5x=3)=24 | | 8x=-16+8x=16 | | 80*0.75^x=10 | | 8x=16+8x=16 | | d/12=-11 | | 5x-2+4=4x+5 | | 2(x=6)=12 | | 15t=120t;=8 | | 5(x-3)+11=5x-3 | | 24x+37=70-86x | | 9y+6=7y-39 | | 35x-72=14-87x | | 95x-40=15x+80 | | 5(x-8)+26=5x-14 | | 15x-37=88x+89 | | 89x+25=14x+50 | | –16j+11j=–15 | | 4x^{5}-32x=0 | | Y=20/x-3 | | 2x/6-6=16 | | -20x-13=57-78x | | 1/2(x-3/10)-3/5(6/5-x)=11/10x-87/100 | | Y=20/3-x | | t3+ 9=12 | | -56=-8t | | -5(3x-15)=2(x-14)-67 | | 3x~7=2(x~12) | | 17-1.25x=2 | | 3/u=-1 | | 2b−10=6 | | 18+5x=2(x+6)-36 | | 5y–8=3y–2 |