If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-1/7k+8/5=-2-5/9k
We move all terms to the left:
-1/7k+8/5-(-2-5/9k)=0
Domain of the equation: 7k!=0
k!=0/7
k!=0
k∈R
Domain of the equation: 9k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
-1/7k-(-5/9k-2)+8/5=0
We get rid of parentheses
-1/7k+5/9k+2+8/5=0
We calculate fractions
4536k^2/1575k^2+(-225k)/1575k^2+875k/1575k^2+2=0
We multiply all the terms by the denominator
4536k^2+(-225k)+875k+2*1575k^2=0
We add all the numbers together, and all the variables
4536k^2+875k+(-225k)+2*1575k^2=0
Wy multiply elements
4536k^2+3150k^2+875k+(-225k)=0
We get rid of parentheses
4536k^2+3150k^2+875k-225k=0
We add all the numbers together, and all the variables
7686k^2+650k=0
a = 7686; b = 650; c = 0;
Δ = b2-4ac
Δ = 6502-4·7686·0
Δ = 422500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{422500}=650$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(650)-650}{2*7686}=\frac{-1300}{15372} =-325/3843 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(650)+650}{2*7686}=\frac{0}{15372} =0 $
| 5(a+1)=9 | | 9.70/5=x/11 | | 394=5p-7(8p+2) | | $9.70/5=x/11 | | 2p-6=5(p+9) | | 1.75+.75=4.75m | | 2*(8-y)=12+-1.3333 | | 2x-12.5=-3+7.5 | | 7x+5x+2x-10+90=360 | | 5^6-2x=120 | | 89d=712 | | 12•x=-6 | | 1x+2=5x+7 | | 88+3x-2-x=6x+100 | | 7x+5=8* | | 2^(x+4)=128 | | 21≤4c,c=2.5 | | 5h−7=2(h+1) | | |3x|=3x | | 4x+52=6x+12 | | 2x(4+1)=2x+24 | | 2c−2=4c–6 | | 8x+4x+7=7x+2 | | X+(x+2)=85 | | 7x-20=360 | | 6b^2-12b-4=-7 | | 13=x+83 | | 2(a-5)=a+2.52 | | 11x+89=25x+33 | | 1095=15c | | 6x-30-7x=12 | | 2x+53=3x+23 |