-1/6x+2/3x+2=11

Simple and best practice solution for -1/6x+2/3x+2=11 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1/6x+2/3x+2=11 equation:



-1/6x+2/3x+2=11
We move all terms to the left:
-1/6x+2/3x+2-(11)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
-1/6x+2/3x-9=0
We calculate fractions
(-3x)/18x^2+12x/18x^2-9=0
We multiply all the terms by the denominator
(-3x)+12x-9*18x^2=0
We add all the numbers together, and all the variables
12x+(-3x)-9*18x^2=0
Wy multiply elements
-162x^2+12x+(-3x)=0
We get rid of parentheses
-162x^2+12x-3x=0
We add all the numbers together, and all the variables
-162x^2+9x=0
a = -162; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·(-162)·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*-162}=\frac{-18}{-324} =1/18 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*-162}=\frac{0}{-324} =0 $

See similar equations:

| z+5/3=6 | | 3a/10=0 | | f=3f-13 | | Y=(x-12)^2+5 | | 4x+8Y=170 | | 15=3(a-2) | | 9/h=18 | | 15=3(a−2) | | 1842.4x=1245x | | 3k+2=2 | | /12x–5=25 | | 15h-3=13 | | −3x2x−3)=−6x+9 | | 5x^2-62x+160=0 | | -5=7n-5+6n | | 25x24= | | b)12(3푔−2)=푔2 | | 365-t=317 | | 13=1+6p-6 | | X+2/x=10 | | 7v+8-6=-19 | | -2b+3b=1 | | 2-7v-6=17 | | 3x²+14x+4=0 | | 6x-6=9x-3* | | 2p/6=12 | | 10x+x=325 | | x+316=180 | | 325x=10 | | 10h=325 | | -2(3x-4)=-20 | | -7x-2(-4x+5)=22 |

Equations solver categories