-1/5x-2=1/2x+7

Simple and best practice solution for -1/5x-2=1/2x+7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1/5x-2=1/2x+7 equation:



-1/5x-2=1/2x+7
We move all terms to the left:
-1/5x-2-(1/2x+7)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 2x+7)!=0
x∈R
We get rid of parentheses
-1/5x-1/2x-7-2=0
We calculate fractions
(-2x)/10x^2+(-5x)/10x^2-7-2=0
We add all the numbers together, and all the variables
(-2x)/10x^2+(-5x)/10x^2-9=0
We multiply all the terms by the denominator
(-2x)+(-5x)-9*10x^2=0
Wy multiply elements
-90x^2+(-2x)+(-5x)=0
We get rid of parentheses
-90x^2-2x-5x=0
We add all the numbers together, and all the variables
-90x^2-7x=0
a = -90; b = -7; c = 0;
Δ = b2-4ac
Δ = -72-4·(-90)·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-7}{2*-90}=\frac{0}{-180} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+7}{2*-90}=\frac{14}{-180} =-7/90 $

See similar equations:

| 4x^2+32x=28 | | (3x+5)+10x=9+7x | | 3(x^2)-4=23 | | 125^x+1=25^x-1 | | 4+1.1(-8x-9.3)+8.6x=4−9 | | 4-92x=180 | | 10x+6+64=180 | | (x^2-1)/6=4 | | 16=0.50x^2 | | K(t)=10t−19 | | f+12/9=6 | | 10/c-4=1 | | 3x-4+2x+12=38 | | -2x-5=-3* | | 9x+8=1+10x | | 7y+3.5=-6 | | 35h+20=125 | | 38-y=17 | | 12x+14+70=180 | | (2x+1)(2x−1)=0 | | 5/7(x–9)=25 | | 2n+11=57 | | 2(5x+4)=2(6x-6) | | 42=5x-(2x+3)+1 | | (2+m)/2=5 | | 79=-11x-31 | | 3x+22=115 | | 4n-1=20 | | (1+n)/4=-4 | | x(6+15)=273 | | 4(t+1)=-1 | | 19x+4=(83)+7x+5 |

Equations solver categories