-1/5x+4=2/3x-1

Simple and best practice solution for -1/5x+4=2/3x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1/5x+4=2/3x-1 equation:



-1/5x+4=2/3x-1
We move all terms to the left:
-1/5x+4-(2/3x-1)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 3x-1)!=0
x∈R
We get rid of parentheses
-1/5x-2/3x+1+4=0
We calculate fractions
(-3x)/15x^2+(-10x)/15x^2+1+4=0
We add all the numbers together, and all the variables
(-3x)/15x^2+(-10x)/15x^2+5=0
We multiply all the terms by the denominator
(-3x)+(-10x)+5*15x^2=0
Wy multiply elements
75x^2+(-3x)+(-10x)=0
We get rid of parentheses
75x^2-3x-10x=0
We add all the numbers together, and all the variables
75x^2-13x=0
a = 75; b = -13; c = 0;
Δ = b2-4ac
Δ = -132-4·75·0
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{169}=13$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-13}{2*75}=\frac{0}{150} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+13}{2*75}=\frac{26}{150} =13/75 $

See similar equations:

| -12n-4=6n^2 | | 4-(20x6)=-116 | | 154-4y+4y-31=123 | | 0.5^(x)=16 | | 3x-3x+2(x-3)=x+2 | | 6/(+2)=5/4x | | 3^3x=27x | | 3(2x+4)=6-2x | | 44=x+x*0.75 | | 8x-9=45*2x | | (2x+1)(3x-1)(4x+5)=0 | | t^2-2t=100 | | 15+9p=18 | | 17n+5=25(n=2) | | 2023(x-4)-2022(x-4)=-6 | | 15x+11/5=0 | | 15/16=8/x | | 4/7(y+7)=4 | | (n-2)180/n=160. | | f(-25)=-3+8 | | 6x+12x+12=0 | | 8x+11=5x+67 | | 1.35(x)=280000 | | 1.35x=2800000 | | 1.35x=280000 | | 3(2x+5)=30+5x | | x^-3x-2x=0 | | 5x-32=42 | | 4x+2(2x-3)=8(2x-2) | | 13x+2=15x+10 | | 2+16x=15x+10 | | (3x-5)(6x-1)=0 |

Equations solver categories